

Facility Location Problem in a Network

This Hypercard stack was prepared by:
 Dennis L. Bricker,
 Dept. of Industrial Engineering,
 University of Iowa,
 Iowa City, Iowa 52242
 e-mail: dbricker@icaen.uiowa.edu

 Median Problem

minimizing the sum of weighted shortest path lengths

 Center Problem

minimizing the maximum of (possibly) weighted shortest path lengths

©Dennis Bricker, U. of Iowa, 1997

The p-Median Problem

Given a network with nodes $j=1,2,\dots,n$
 where w_j = "weight" of node j
 (e.g., volume of shipments)

Let $d(X,j)$ = distance from node j to
 the nearest point in the set X

Find $X = \{x_1, x_2, \dots, x_p\}$ which

$$\text{minimizes } \tau(X) = \sum_{j=1}^n w_j d(X,j)$$

The points in X are
 called p -medians.

©Dennis Bricker, U. of Iowa, 1997

Where should a single facility be located to serve the eight cities?

Objective:
 Minimize the sum of the distances to the cities weighted by their demands

©Dennis Bricker, U. of Iowa, 1997

Hakimi's Theorem

At least one set of p -medians exist solely on the nodes of the network.

That is, we need search only among the nodes for the p -medians!

©Dennis Bricker, U. of Iowa, 1997

Find the matrix of shortest path lengths between nodes of the network (e.g., by Floyd's algorithm)

©Dennis Bricker, U. of Iowa, 1997

TO							
A	B	C	D	E	F	G	H
0 4 3 2 6 5 8 6							
4 0 2 3 4 4 7 5							
3 2 0 1 3 2 5 3							
2 3 1 0 4 3 6 4							
6 4 3 4 0 5 8 6							
5 4 2 3 5 0 3 1							
8 7 5 6 8 3 0 3							
6 5 3 4 6 1 3 0							

W_j 3 1 2 3 1 0 4 1

TO							
A	B	C	D	E	F	G	H
0 4 6 6 6 0 32 6							
12 0 4 9 4 0 28 5							
9 2 0 3 3 0 20 3							
6 3 2 0 4 0 24 4							
18 4 6 12 0 0 32 6							
15 4 4 9 5 0 12 1							
24 7 10 18 8 0 0 3							
18 5 6 12 6 0 12 0							

shortest paths
 $\sum_j W_j d_{ij}$

TO							
A	B	C	D	E	F	G	H
0 4 6 6 6 0 32 6							
12 0 4 9 4 0 28 5							
9 2 0 3 3 0 20 3							
6 3 2 0 4 0 24 4							
18 4 6 12 0 0 32 6							
15 4 4 9 5 0 12 1							
24 7 10 18 8 0 0 3							
18 5 6 12 6 0 12 0							

shortest paths
 $\sum_j W_j d_{ij}$

What if two facilities were to be used?

 Minimum

The optimal location for a single facility to serve the 8 cities is at city C

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Consider all pairs of potential facility sites:

Examples: select minimum shipping cost in each column

$$A \begin{array}{|c|c|c|c|c|c|c|} \hline 0 & 4 & 6 & 6 & 6 & 0 & 32 & 6 \\ \hline 12 & 0 & 4 & 9 & 4 & 0 & 28 & 5 \\ \hline \end{array} 47 = \sum_j \min_{i=A,B} \{W_j d_{ij}\}$$

$$D \begin{array}{|c|c|c|c|c|c|c|} \hline 6 & 3 & 2 & 0 & 4 & 0 & 24 & 4 \\ \hline 18 & 4 & 6 & 12 & 0 & 0 & 32 & 6 \\ \hline \end{array} 39 = \sum_j \min_{i=D,E} \{W_j d_{ij}\}$$

$$A \begin{array}{|c|c|c|c|c|c|c|} \hline 0 & 4 & 6 & 6 & 6 & 0 & 32 & 6 \\ \hline 24 & 7 & 10 & 18 & 8 & 0 & 0 & 3 \\ \hline \end{array} 25 = \sum_j \min_{i=A,G} \{W_j d_{ij}\}$$

There are $\binom{8}{2} = 28$ such combinations to evaluate!

How might one find the 3-median set?

Requires considering $\binom{8}{3} = 56$ combinations!

$$A \begin{array}{|c|c|c|c|c|c|c|} \hline 0 & 4 & 6 & 6 & 6 & 0 & 32 & 6 \\ \hline 12 & 0 & 4 & 9 & 4 & 0 & 28 & 5 \\ \hline 9 & 2 & 0 & 3 & 3 & 0 & 12 & 3 \\ \hline \end{array} 29 = \sum_j \min_{i=A,B,C} \{W_j d_{ij}\}$$

$$A \begin{array}{|c|c|c|c|c|c|c|} \hline 0 & 4 & 6 & 6 & 6 & 0 & 32 & 6 \\ \hline 12 & 0 & 4 & 9 & 4 & 0 & 28 & 5 \\ \hline 6 & 3 & 2 & 0 & 4 & 0 & 24 & 4 \\ \hline \end{array} 34 = \sum_j \min_{i=A,B,D} \{W_j d_{ij}\}$$

etc.

APL evaluation of $\sum_j \min_{i \in S} \{W_j d_{ij}\}$

$+/\lambda \neq (D \times (pD) \rho W) [S;]$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Math Programming Model of the p-Median Problem

Variables

X_{ij} = fraction of demand of customer j supplied by facility at location i

$$Y_i = \begin{cases} 1 & \text{if a facility is located at site } i \\ 0 & \text{otherwise} \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Math Programming Model of the p-Median Problem

$$\begin{aligned} \text{Min } & \sum_{i=1}^m \sum_{j=1}^n W_j D_{ij} X_{ij} \\ \text{subject to } & \sum_{i=1}^m X_{ij} = 1 \quad \forall j=1, \dots, n \\ & X_{ij} \leq Y_i \quad \forall i=1, \dots, m; j=1, \dots, n \\ & \sum_{i=1}^m Y_i = p \\ & X_{ij} \geq 0 \quad \forall i=1, \dots, m; j=1, \dots, n \\ & Y_i \in \{0, 1\} \quad \forall i=1, \dots, m \end{aligned}$$

Heuristic Algorithm for the p-Median Problem

1. Initialization:

Let $k=1$. Find the 1-median (the set $S=X_1$)

2. Facility Addition:

Evaluate the $(n-k)$ combinations of S with a node r not in S , i.e.,

$$\sum_{j \in S \cup \{r\}} \min_{i \in S} \{W_j d_{ij}\} \quad \forall r \notin S$$

Add to S the node yielding the lowest objective function and set $k=k+1$.

©Dennis Bricker, U. of Iowa, 1997

3. Facility Substitution:

Evaluate each of the $k \times (n-k)$ sets obtained by substituting a node not in S for a node in S , i.e.

$$\sum_{j \in S \cup \{r\} \setminus \{s\}} \min_{i \in S} \{W_j d_{ij}\} \quad \forall r \notin S \text{ & } s \in S$$

Replace S by the best set evaluated.

4. If S contains p nodes, i.e., $k=p$, STOP.

Otherwise, return to step 2.

K-median Facility Location Problem

1-Median

the one-median

Cost = 40

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

... beginning with 1-median set {C}

2-Median

Trial additions:

Add 1 2 4 5 6 7 8
cost 31 38 34 37 30 20 29Addition result: Locations 3 7
Cost: 20Add facility at
node G to the
set

Substitution Step

Cost	Locations
25	1 7
31	3 1
32	2 7
38	3 2
18	4 7
34	3 4
43	5 7
37	3 5
38	6 7
30	3 6
47	8 7
29	3 8

Substitution result: Locations 4 7
Cost: 18

©Dennis Bricker, U. of Iowa, 1997

... begin with D & G in set

3-Median

Trial additions:

Add 1 2 3 5 6 8
cost 12 15 14 14 16 15Addition result: Locations 4 7 1
Cost: 12add A
to set

©Dennis Bricker, U. of Iowa, 1997

Substitution Step

Cost	Locations
17	2 7 1
34	4 2 1
15	4 7 2
11	3 7 1
28	4 3 1
14	4 7 3
19	5 7 1
33	4 5 1
14	4 7 5
20	6 7 1
22	4 6 1
16	4 7 6
22	8 7 1
21	4 8 1
15	4 7 8

Substitution result: Locations 3 7 1
Cost: 11

©Dennis Bricker, U. of Iowa, 1997

... begin with A, C, & G in set

4-Median

Trial additions:

Add 2 4 5 6 8
cost 9 8 8 9 8Addition result: Locations 3 7 1 4
Cost: 8add D to
the set

©Dennis Bricker, U. of Iowa, 1997

begin with A, C, D, & G (1,3,4,7)

Substitution Step

Cost	Locations
9	2 7 1 4
26	3 2 1 4
12	3 7 2 4
9	3 7 1 2
8	5 7 1 4
25	3 5 1 4
11	3 7 5 4
8	3 7 1 5
10	6 7 1 4
18	3 6 1 4
12	3 7 6 4
9	3 7 1 6
9	8 7 1 4
17	3 8 1 4
11	3 7 8 4
8	3 7 1 8

Substitution result: Locations 5 7 1 4
Cost: 8

©Dennis Bricker, U. of Iowa, 1997

Allocation of Customers
to Warehouses

	A	B	C	D	E	F	G	H
F	0	4	6	6	6	0	32	6
R	6	3	2	0	4	0	24	4
O	18	4	6	12	0	0	32	6
M	24	7	10	18	8	0	0	3

©Dennis Bricker, U. of Iowa, 1997

1-Median of a Tree

For any set C of vertices, define $W(C) = \sum_{i \in C} w_i$ **Theorem** Let $[a,b]$ be any edge of a tree, and let $A = \text{set of vertices reachable from } a \text{ without passing through } b$ $B = \text{set of vertices reachable from } b \text{ without passing through } a$ Then $W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

©Dennis Bricker, U. of Iowa, 1997

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

©Dennis Bricker, U. of Iowa, 1997

To find the 1-median of a tree:

0. Let $W = \sum_{i \in N} w_i$. Select any vertex j .
1. If $w_j \geq \frac{1}{2} W$, then stop; j is a 1-median.
2. If j has degree 1, let k be its neighbor, i.e., $[k, j]$ will be an edge. Replace w_k with $w_k + w_j$, and delete vertex j from the tree.

Else find an elementary chain from vertex j to a vertex k with degree 1 (preferably using previously unused edges.)

Let $j = k$ and return to step 1.

©Dennis Bricker, U. of Iowa, 1997

Example

Find the 1-median of the tree:

©Dennis Bricker, U. of Iowa, 1997

$w_7 < \frac{W}{2} = 15$. Select neighbor (vertex #6), and replace w_6 with $w_6 + w_7 = 3$. Delete vertex #7.

$w_8 < \frac{W}{2} = 15$. Select neighbor (vertex #6), update w_6 , and delete vertex #8:

Let's choose to begin with vertex #7.

Total "demand" $W = \sum_{i \in N} w_i$ is 30.

$w_6 < \frac{W}{2} = 15$. Find a path 6->8 to a vertex (#8) with degree 1:

$w_5 < \frac{W}{2} = 15$. Select neighbor (vertex #5), update w_5 , and delete vertex #6:

$w_5 < \frac{W}{2} = 15$. Select chain 5 → 9 → 10 → 12 to vertex #12, which has degree 1.

$w_{12} < \frac{W}{2} = 15$. Select neighbor (vertex #10), update w_{10} , and delete vertex #12

... after several more iterations, the tree is as shown, where vertex #9 is being considered.

$w_9 < \frac{W}{2} = 15$, so we select its neighbor (vertex #5), update w_5 , and delete vertex #9.

$w_5 > \frac{W}{2} = 15$, so we stop; Vertex #5 is the 1-median.

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

Edge (5,9): $W(9) = 14 < 16 = W(5)$ implies $\tau(9) > \tau(5)$

$W(A) \geq W(B)$ implies $\tau(a) \leq \tau(b)$

Edge [5,4]: $W(5) = 22 > 8 = W(4)$ implies $\tau(4) > \tau(5)$

