

Assuming that the time for each of the three tasks has exponential distribution, we wish to compute

- Steadystate distribution of number of machines in operation
- Average utilization of machines

for jobs with exponentially-distributed processing time, where the mean is 5 minutes

A machine operator has responsibility for four semi-automatic machines.

While processing jobs, the machines require no attention from the operator. When a job is complete, the operator must

	Average Time Req'd
1) Unload the old job	$1/\mu_1 = 15$ seconds
2) Load the new job	$1/\mu_2=20$ seconds
3) Restart the machine	$1/\mu_3=10$ seconds
	Total 45 seconds
	©Dennis Bricker, U. of Iowa, 1997

Mean service time is $\sum_{i=1}^{3} \frac{1}{\mu_i} = 45$ seconds Variance of service time is $\sum_{i=1}^{3} (\frac{1}{\mu_i})^2 = 725$

i.e., standard deviation is 26.925824 seconds, substantially less than 45, the standard deviation of exponential dist'n with mean 45 sec.

If $\mu_1 = \mu_2 = \mu_3 = \mu$, then the service time has Erlang-3 probability distribution.

©Dennis Bricker, U. of Iowa, 1997

Continuou Markov	ıs-Time
Markov	Chain

Define states:

- (0) all machines in operation
- (i,j) i machines out of operation with operator currently performing task j

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Steady-State Distribution

			I
i	j	t	PI
1 23 4 5 6 7 8 9 10 11 12 13	0111222333444	0123123123123	$\begin{array}{c} 0.501827\\ 0.132482\\ 0.147203\\ 0.066910\\ 0.029394\\ 0.060558\\ 0.034660\\ 0.003982\\ 0.012547\\ 0.002547\\ 0.000199\\ 0.000199\\ 0.000192\\ 0.000828 \end{array}$

©Dennis Bricker, U. of Iowa, 1997

Mean number of jobs in system = 0.6788461127

That is, an average of 0.6788 machines are idle at any time, a utilization of 83.03%

©Dennis Bricker, U. of Iowa, 1997

Suppose that we use the M/M/1/N/N "approximation" to this problem.

The variance of the service time of the M/M/1/N/N system is larger.

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

4

II.

π

π

©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 3 minutes,

π

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

The mean number of customers in the system (including the one being served) is: 0.3398271981 The average arrival rate of customers is 0.3660172802 Using Little's formula, the average time spent in the system, per customer, is W = 0.9284457769 4-0.339827 = 91.5% Expected utilization =

4 ©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 1 minute,

.e.,

$$\lambda = \frac{1}{10}$$
Distribution of # jobs in the System
$$\frac{j}{0} \frac{P}{0.0.724170}$$

$$\frac{1}{0.233303} \frac{0.038766}{3}$$

$$\frac{3}{0.003612}$$
Mean number of jobs in system = 0.3222666048
Expected utilization = $\frac{4-0.32227}{4} = 91.93\%$

©Dennis Bricker, U. of Iowa, 1997

Summary: Expected Utilization, using the 2 models

λ	M/M/1/N/N	M/E3/1/N/N
1/3	68.93%	70.89%
1/5	81.77%	83.03%
1/10	91.5%	91.93 %

Assuming exponential dist'n for service time, i.e., a larger variance, leads to an underestimate of the utilization! 🏌

©Dennis Bricker, U. of Iowa, 1997

i.e.,