

Steady-State Distribution

i	j	t	PI
1	0	0	0.501827
2	1	1	0.132482
3	1	2	0.147203
4	1	3	0.066910
5	2	1	0.029394
6	2	2	0.060558
7	2	3	0.034660
8	3	1	0.003982
9	3	2	0.012547
10	3	3	0.008307
11	4	1	0.000199
12	4	2	0.001102
13	4	3	0.000828

Steady-state Distribution of the C-T Markov Chain

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Distribution of # jobs in the System

j	P
0	0.501827
1	0.346595
2	0.124612
3	0.024837
4	0.002129

Mean number of jobs in system = 0.6788461127

That is, an average of 0.6788 machines are idle at any time, a utilization of 83.03%

©Dennis Bricker, U. of Iowa, 1997

Steady-state Distribution of # of Idle Machines

©Dennis Bricker, U. of Iowa, 1997

Suppose that we use the M/M/1/N/N "approximation" to this problem.

The variance of the service time of the M/M/1/N/N system is larger.

Birth-Death Model

©Dennis Bricker, U. of Iowa, 1997

M/M/1/N/N

with $\lambda = 1/5$ per minute $\mu = \frac{4}{3}$ per minute

Steady-State Distribution

i	Pi
0	0.509385
1	0.305631
2	0.137534
3	0.041260
4	0.006189

The mean number of customers in the system (including the one being served) is: 0.7292361766

The average arrival rate of customers is 0.6541527647

Using Little's formula, the average time spent in the system, per customer, is $W = 1.114779629$ Expected utilization = $\frac{4 - 0.729236}{4} = 81.77\%$

©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 3 minutes, rather than 5 minutes,

i.e., $\lambda = 1/3$ using the original model,
i.e., not the birth-death model

Distribution of # jobs in the System

j	P
0	0.291087
1	0.366554
2	0.242240
3	0.087166
4	0.012954

Mean number of jobs in system = 1.16434698

Expected utilization = $\frac{4 - 1.1643}{4} = 70.89\%$

©Dennis Bricker, U. of Iowa, 1997

M/M/1/N/N

with $\lambda = \frac{1}{3}$ per minute $\mu = \frac{4}{3}$ per minute

Steady-State Distribution

i	P _i
0	0.310680
1	0.310680
2	0.233010
3	0.116505
4	0.029126

The mean number of customers in the system (including the one being served) is: 1.242718447

The average arrival rate of customers is 0.9190938511

Using Little's formula, the average time spent in the system, per customer, is $W = 1.352112676$ Expected utilization = $\frac{4-1.242718}{4} = 68.93\%$

©Dennis Bricker, U. of Iowa, 1997

M/M/1/N/N

with $\lambda = \frac{1}{10}$ per minute $\mu = \frac{4}{3}$ per minute

Steady-State Distribution

i	P _i
0	0.725487
1	0.217646
2	0.048970
3	0.007346
4	0.000551

The mean number of customers in the system (including the one being served) is: 0.3398271981

The average arrival rate of customers is 0.3660172802

Using Little's formula, the average time spent in the system, per customer, is $W = 0.9284457769$ Expected utilization = $\frac{4-0.339827}{4} = 91.5\%$

©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 1 minute,

i.e.,

$\lambda = \frac{1}{10}$

Distribution of # jobs in the System

j	P
0	0.724170
1	0.233303
2	0.038766
3	0.003612
4	0.000149

Mean number of jobs in system = 0.3222666048

Expected utilization = $\frac{4-0.32227}{4} = 91.93\%$

©Dennis Bricker, U. of Iowa, 1997

Summary: Expected Utilization, using the 2 models

λ	M/M/1/N/N	M/E ₃ /1/N/N
$\frac{1}{3}$	68.93%	70.89%
$\frac{1}{5}$	81.77%	83.03%
$\frac{1}{10}$	91.5%	91.93%

Assuming exponential dist'n for service time, i.e., a larger variance, leads to an underestimate of the utilization! ↗

©Dennis Bricker, U. of Iowa, 1997