

MDP Example

©Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa

A taxi serves three adjacent towns: A, B, and C.

Each time the taxi discharges a passenger, the driver must

choose from three possible actions:

- (1) "Cruise" the streets looking for a passenger.
- (2) Go to the nearest taxi stand (hotel, train station, etc.)
- (3) Wait for a radio call from the dispatcher with instructions (but not possible in town B because of distance and poor

MDP model:

States: {A, B, C}

Action sets:

$$K_{A} = \{1,2,3\}, \ K_{B} = \{1,2,3\}, \ K_{C} = \{1,2\}$$

Transition probability matrices

Cruising	Waiting at	Waiting for
streets	taxi stand	dispatch
$P^{1} = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/4 & 1/2 \end{bmatrix}$	$P^{2} = \begin{bmatrix} 1/16 & 3/4 & 3/16 \\ 1/16 & 7/8 & 1/16 \\ 1/8 & 3/4 & 1/8 \end{bmatrix}$	$P^{3} = \begin{bmatrix} 1/4 & 1/8 & 5/8 \\ 1/4 & 8/8 & 8/8 \\ 0 & 1 & 0 \\ 3/4 & 1/16 & 3/16 \end{bmatrix}$

Payoff matrices (expected profit per passenger):

 R_{ii}^{k} = expected profit if action k is selected, and passenger wishes to travel from town i to town j

Cruising	Waiting at	Dispatch
streets	taxi stand	call
$R^{1} = \begin{bmatrix} 10 & 4 & 8 \\ 14 & 0 & 18 \\ 10 & 2 & 8 \end{bmatrix}$	$R^2 = \begin{bmatrix} 8 & 2 & 4 \\ 8 & 16 & 8 \\ 6 & 4 & 2 \end{bmatrix}$	$R^3 = \begin{bmatrix} 4 & 6 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 8 \end{bmatrix}$

Since our model assumes minimization of cost, we use

$$C_i^k = -\sum P_{ij}^k R_{ij}^k$$

Note: This example was introduced by Ron Howard in his textbook, Dynamic Programming and Markov Processes, MIT Press (1960), in which no consideration was given to the variable amount of time per stage (trip) in the optimization model.

States:

1	state
1	town A
2	town B
3	town C

Actions:

Cost Matrix

	i	state	1	2	3
	1	town A	-8	-2.75	-4.25
	2	town B	⁻ 16	-15	999
	3	town C	-7	-4	-4.5
(Row	IS ~ :	states, Col	lumns ~	actions)	

A value of 999 above signals an infeasible action in a state.

Note that the algorithm assumes minimization, and so the "cost" is the negative of the expected payoffs!

Transition Probabilities Action: CRUISE 0 1 2 3 m --- --- 1 0.5 0.25 0.25 2 | 0.5 0 0.5 3 | 0.25 0.25 0.5 Action: TAXISTAND

1 0.0625 0.75 0.1875 2 0.0625 0.875 0.0625 3 0.125 0.75 0.125 1 0.25 0.125 0.625

Let's first use the criterion: Maximize average reward per trip Minimize $\sum \sum c_i^a x_i^a$

subject to
$$\sum_{j}^{i} x_{j}^{a} = \sum_{i} \sum_{a} p_{ij}^{a} x_{i}^{a}$$
 for all states j

$$\sum_{i} \sum_{a} x_{i}^{a} = 1, \quad x_{i}^{a} \ge 0 \quad \text{for all states } i \quad \text{and actions } a \in A_{i}$$

LP Tableau for MDP

k:	1	2	3	1	2	1	2	3		
i:	1	1	1	2	2	3	3	3	R:	HS
Min	-8	-2.75	-4.25	-16	⁻ 15	-7	-4	-4.5		0
	0.5	0.9375	0.75	-0.5	-0.0625	-0.25	-0.125	-0.75		0
	-0.25	-0.75	-0.125	1	0.125	-0.25	-0.75	-0.0625		0
	1	1	1	1	1	1	1	1		1

Note that one of the "steady-state" equations (for state C) was eliminated because of redundancy.

Phase One procedure was used to find an initial basic feasible solution

Iteration 0

Action: RADIO CALL

Policy:	(Cost= -8)			
State		Action		P{i}	R{i}
1)	town A	3)	RADIO CALL	0.283186	-4
2)	town B	1)	CRUISE	0.327434	6
3)	town C	2)	TAXISTAND	0.389381	8

k: i:		1 1	2	-	1	_	1 3	2	3		rhs
		-3.5	-3	0	0	- 6	0.5	0	6.125		8
		0.725664	1.0531	1	0	0.247788	0.0176991	0	0.473451		0.283186
		0.0265487	-0.37610	5 0	1	0.411504	0.292035	0	0.561947		0.327434
		0.247788	0.323009	0	0	0.340708	0.725664	1	0.911504		0.389381

Initially the basic variables are $\{X_A^3, X_B^1, X_C^2\}$ (exactly one per state).

The values of these variables are the steady-state probabilities of the Markov chain corresponding to the policy (3, 1, 2).

The "most negative" reduced cost is -6 (of variable X_B^2), and so that variable should enter the basis, replacing X_B^1 . (The pivot element is 0.411504, indicated above.)

Policy: (Cost= $^{-}12.7742$)

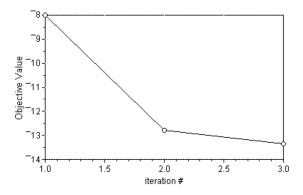
State			Action		P{i}	R{i}
1)	town A	Ą	3)	RADIO CALL	0.0860215	⁻ 9.16129
2)	town H	3	2)	TAXISTAND	0.795699	13.2258
3)	town (2	2)	TAXISTAND	0.11828	12.7742

k:	1	2	3	1	2	1	2	3		
i:	1	1	1	2	2	3	3	3	Ĺ	rhs
Min	-3.1129	⁻ 8.48387	0	14.5806	0	4.75806	0	14.3185		12.7742
- 1	0.709677	1.27957	1	-0.602151	0	-0.193548	0	-0.811828		0.0860215
	0.0645161	-0.913978	0	2.43011	1	0.709677	0	1.36559		0.795699
1	0.225806	0.634409	0	-0.827957	0	0.483871	1	0.446237		0.11828

The next pivot should enter X_A^2 into the basis, replacing X_A^3 .

Iteration 2

Policy:	(Cost=	-13	3.3445)					
State			Action			P{i}		R{i}
1)	town A	A.	2)	TAXISTAND		0.0672269		-1.17647
2)	town B	3	2)	TAXISTAND	ĺ	0.857143	ĺ	12.6555
3)	town C	: İ	2)	TAXISTAND	ĺ	0.0756303	ĺ	13.3445


k: i:	l	1 1	2	3 1	1 2	2	1 3	2	3		rhs
Min	Ī	1.59244	0	6.63025	10.5882	0	3.47479	0	8.93592	ĺ	13.3445
		0.554622	1	0.781513	-0.470588	0	-0.151261	0	-0.634454		0.0672269
		0.571429	0	0.714286	2	1	0.571429	0	0.785714		0.857143
	1	-0.12605	0	0.495798	-0.529412	0	0.579832	1	0.848739		0.0756303

All reduced costs are nonnegative!

Optimal Policy

	State	Act	ion	P{i}	R{i}
1)	town A	2)	TAXISTAND	0.0672269	-1.17647
2)	town B	2)	TAXISTAND	0.857143	12.6555
3)	town C	2)	TAXISTAND	0.0756303	13.3445

Average cost/stage = $^{-}13.3445$

10 Dual variables 2.0 1.0 1.5 2.5 3.0 iteration

Value Iteration Method (Note: objective: maximize average reward per passenger)

We want to compute $\lim_{n\to\infty}\frac{\widetilde{f_n}(i)}{n}$

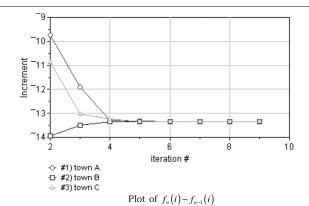
where
$$f_n(i) = \min_{a \in A_i} \left\{ C_i^a + \sum_j p_{ij}^a f_{n-1}(j) \right\}$$

Since $\lim_{n\to\infty}\frac{f_n(i)}{n}$ should be independent of the state i, our convergence criterion is to compute

$$\Delta f(i) = \left| \frac{f_n(i)}{n} - \frac{f_{n-1}(i)}{n-1} \right|$$

and terminate when $\max_{i} \left\{ \Delta f_n(i) \right\} - \min_{i} \left\{ \Delta f_n(i) \right\} \le e$

Tolerance: 1.00E-6


Minimizing average cost/period

iteration	Max ΔV	Min ΔV	gap (%)
1	-9.75000E0	-1.39375E1	3.00448E1
2	-1.19141E1	-1.34844E1	1.16454E1
3	-1.32314E1	-1.33579E1	9.46741E-1
4	-1.33307E1	-1.33465E1	1.18444E-1
5	-1.33431E1	-1.33448E1	1.27635E-2
6	-1.33444E1	-1.33446E1	1.59546E-3
7	-1.33445E1	-1.33445E1	1.91449E-4
8	-1.33445E1	-1.33445E1	2.39312E-5

***Converged! with gap = 0.0000239312%

Solution:

	state	action	Value
Ī	1	2	⁻ 13.3445
	2	2	-13.3445
	3	2	$^{-}13.3445$

Next we will solve the problem with the objective of maximizing the total discounted payoff.

Criterion: Discounted Total Cost, with β = (1.2)-1 = 0.833333

k: i:	1 1	2 1	3 1	1 2	2 2	1 3	2	3	RHS
Min	-8	-2.75	-4.25	16	15	-7	-4	-4.5	0
- 1	0.583	0.948	0.792	-0.417	-0.052	-0.208	-0.104	-0.625	1
- 1	-0.208	-0.625	$^{-}0.104$	1	0.271	-0.208	-0.625	-0.052	0
- 1	-0.208	-0.156	-0.521	$^{-}0.417$	-0.052	0.583	0.895	0.843	0

Note: Specifying initial conditions to be deterministic, with town A as initial state

$$\begin{split} & \textit{Minimize} \sum_{i} \sum_{a \in A_{i}} C_{i}^{a} X_{i}^{a} \\ & \textit{subject to} \quad \sum_{a \in A_{j}} X_{j}^{a} = b \sum_{i} \sum_{a \in A_{i}} P_{ij}^{a} X_{i}^{a} \quad \ \forall j \\ & X_{i}^{a} \geq 0 \quad \forall a \in A_{i}, \forall i \end{split}$$

MDP: Taxi page

Phase One procedure was used to find **initial basic feasible** solution

Iteration 0

Policy:	(Cost= -50				
State		Action		X{i}	V{i}
1)	town A	1)	CRUISE	3.783	-50.12
2)	town B	1)	CRUISE	0.8589	-56.01
3)	town C	3)	RADIO CALL	1.358	-45.91

k:	1	2	3	1	2	1	2	3	
_ i:	1	1	1	2	2	3	3	3	rhs
Min	0	2.574	5.677	0	$^{-}4.831$	-2.327	-3.097	0	50.12
	1	1.361	1.151	0	0.4107	0.3612	0.5118	0	3.783
	0	-0.3425	0.1215	1	0.3679	-0.09487	$^{-}0.4685$	0	0.8589
	0	$^{-}0.01831$	-0.273	0	0.2214	0.7337	0.9567	1	1.358

i~state, k~action

0 -2 -2 -8 2 4 6 8 10

Plot of $\log_{10} \left[\max_{i} \left\{ \Delta f_{n}(i) \right\} - \min_{i} \left\{ \Delta f_{n}(i) \right\} \right]$

Note that X_i^a is **not a probability** in this model, and so the equation

$$\sum_{i}\sum_{i}X_{i}^{a}=1$$

is **not** included in the LP tableau.

There is **one equation for each state** (not including the objective row), with no redundancy as in the average cost/stage LP model, so the total number of variables, as before, is equal to the number of states, and as before, in a basic feasible solution there is **one basic variable per state**.

ri page

Iteration 1

Policy:	(Cost= -6	1.4)						
State	2	Action	n			$X\{i\}$		V{i}
1)	town A	1)	CRUIS	SE		2.824		⁻ 61.4
2)	town B	2)	TAXI	STAND	· İ	2.334	- 1	-77.89
3)	town C	3)	RADIO	CAL	L	0.8414		⁻ 55.62
k:	1 2	3	1	2	1	2	3	
i:	1 1	1	2	2	3	3	3	rhs
Min	0 -1.923	7.273	13.13	0 -	3.573	-9.249	0	61.4

0.6017 0

0.4671 -0.2579 1.035 0 -1.273 0 2.824

1.016 -1.116 0.3302 2.718

i~state, k~action

1.743

DP: Taxi page 21 MDP: Taxi page

Iteration 2

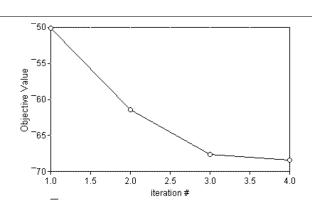
Policy: (Cost= -67.68)									
		State		Action	X{i}	V{i}			
	1)	town A	1)	CRUISE	2.121	-67.68			
	2)	town B	2)	TAXISTAND	3.199	81.74			
	3)	town C	2)	TAXISTAND	0.6793	-69.36			

k:		L	2	3	1	2	1	2	3	
i:] :	L	1	1	2	2	3	3	3	rhs
Min	()	-0.5206	4.689	8.638	0	2.332	0	7.467	67.68
	:	L	1.586	1.305	-0.6136	0	$^{-}0.1936$	0	-0.8355	2.121
	()	$^{-}0.7378$	-0.02557	2.099	1	0.5551	0	1.028	3.199
	ĺ ()	0.1516	$^{-}0.2794$	-0.4858	0	0.6384	1	0.8073	0.6793

i~state, k~action

Iteration 3

POIICA:	(Cost= 68	3.3/)			
	State		Action	X{i}	V{i}
1)	town A	2)	TAXISTAND	1.337	68.37
2)	town B	2)	TAXISTAND	4.186	81.91
3)	town C	2)	TAXISTAND	0.4766	-69.56


k:	1 1	2	3	1	2	1	2	3	
i:	1	1	1	2	2	3	3	3	rhs
Min	0.3282	0	5.117	8.437	0	2.269	0	7.193	68.37
	0.6304	1	0.8227	-0.3868	0	-0.122	0	-0.5267	1.337
	0.4651	0	0.5814	1.814	1	0.4651	0	0.6395	4.186
	i-0 00556	0	-0 4041	-0 4271	0	0 6560	1	0 0072	0 4764

i~state, k~action

Reduced costs are now nonnegative!

MDP: Taxi page 23 MDP: Taxi page 24

State			C	optimal Poli	<mark>icy</mark>	
2) town B 2) TAXISTAND 4.186 -81.91 0 3) town C 2) TAXISTAND 0.4766 -69.56 0 Alpha is initial distribution of the state Discounted future costs = -68.37		ate	Action	X{i}	V{i}	alpha
3) town C 2) TAXISTAND 0.4766 -69.56 0 Alpha is initial distribution of the state Discounted future costs = -68.37 MDP. Taxi 90 97 1.0					-68.37	1
Discounted future costs = 768.37 MDP: Taxi 90 80 1.0 1.5 2.0 2.5 3.0 3.5 4.0 **1) town A						
90 80 70 1.0 1.5 2.0 2.5 3.0 3.5 4.0 • #1) town A • #2) town B	Alpha is in	itial dis	stribution	of the st	ate	
90 80 70 40 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ************************************	Discounted	future co	osts = ⁻ 68	. 37		
80 70 60 40 1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #						
9 70 70 60 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 1 1.0 1 1.5 1 1.0 1 1.5 1 1.0 1 1.0 1 1.5 1 1.0 1 1						
9 70 70 60 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 1.0 1.5 1 1.0 1 1.5 1 1.0 1 1.5 1 1.0 1 1.0 1 1.5 1 1.0 1 1						
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	90					
40 1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	90					
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	90					
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	90					
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	90					
40 1.0 1.5 2.0 2.5 3.0 3.5 4.0	90			-		
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	Dual variables					
1.0 1.5 2.0 2.5 3.0 3.5 4.0 iteration #	Dual variables			0		
→ #1) town A	90 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80			0		
-D- #2) town B	90 80 80 80 80 80 80 80 80 80 80 80 80 80	1.5		5 3.0	3.5	4.0
	90 80 80 70 60 40 1.0		2.0 2.		3.5	4.0
•	90 80 80 70 60 40 1.0 \$\psi #1) to	wn A	2.0 2.		3.5	4.0
	90 80 80 70 60 40 1.0 \$\psi #1\)to	wn A wn B	2.0 2.		3.5	4.0
	90 80 80 70 60 40 1.0 0 #1) to	wn A wn B	2.0 2.		3.5	4.0
	90 80 80 70 60 40 1.0 \$\psi #1\) to \$\$\psi\$ #1\) to \$\text{\$\psi\$ #2\) to \$\text{\$\psi\$ \$\psi\$ \$\psi	wn A wn B	2.0 2.		3.5	4.0
	90 80 80 70 60 40 1.0 \$\psi #1\) to \$\$\psi\$ #1\) to \$\text{\$\psi\$ #2\) to \$\text{\$\psi\$ \$\psi\$ \$\psi	wn A wn B	2.0 2.		3.5	4.0

Value Iteration Method

Tolerance: 1.00E-6

Minimizing discounted future costs

teration	Max ΔV	Min ΔV	gap (%)
1	-8.12500E0	-1.14479E1	2.90264E1
2	-7.55425E0	-9.21658E0	1.80363E1
3	-7.04056E0	-7.57706E0	7.08063E0
4	-6.24756E0	-6.28089E0	5.30648E-1
5	-5.22831E0	-5.23178E0	6.63601E ⁻ 2
6	-4.35921E0	-4.35951E0	6.89203E-3
7	-3.63287E0	-3.63290E0	8.61510E-4
8	-3.02741E0	-3.02741E0	1.02206E-4
9	-2.52284E0	-2.52284E0	1.27758E ⁻ 5

***Converged! with gap = 0.00001278%

-55.76 -69.30 -56.95

Solving again....

Tolerance: 1.00E⁻12 Reduced the tolerance!

iteration	Max ΔV	Min ΔV	gap (%)
1	-8.12500E0	-1.14479E1	2.90264E1
2	-7.55425E0	-9.21658E0	1.80363E1
3	-7.04056E0	-7.57706E0	7.08063E0
4	-6.24756E0	-6.28089E0	5.30648E ⁻ 1
5	-5.22831E0	-5.23178E0	6.63601E ⁻ 2
6	-4.35921E0	-4.35951E0	6.89203E-3
7	-3.63287E0	-3.63290E0	8.61510E-4
8	-3.02741E0	-3.02741E0	1.02206E-4
9	-2.52284E0	-2.52284E0	1.27758E-5
10	-2.10237E0	-2.10237E0	1.57556E-6
11	-1.75198E0	-1.75198E0	1.96944E-7
12	-1.45998E0	-1.45998E0	2.45345E-8
13	-1.21665E0	-1.21665E0	3.06725E-9
14	-1.01387E0	-1.01387E0	3.82647E-10
15	-8.44896E-1	-8.44896E-1	4.79360E ⁻ 11

***Converged! with gap = $4.794E^{-11}$ %

Solution:

state	action	Value	
1	2	-64.15	
2	2	⁻ 77.69	
3	2	$^{-}65.34$	

Note: Policy is same as the earlier run with larger tolerance, but objective value is nearer to true value.

MDP: Taxi
0 -2 -4 -6 -6 -8 -10
0 5 10 15 20
iteration #
-⇔ #1)town A
-D #2) town B

Because the duration (in minutes) of a stage (trip) will depend upon the policy which we select,

the objective of maximizing the reward per trip is inappropriatewe should instead maximize the **reward per unit time**.

This requires that we treat this as a

Semi-Markov Decision Process (SMDP).

Suppose we have the additional data:

Expected time to obtain passenger:

 $\boldsymbol{W}_{i}^{k}=$ expected waiting time (minutes) in town i when action k is selected

Town \ Action	Cruising	Taxi stand	Dispatch call	
A	15	20	20	
В	10	25	∞	
С	20	25	20	

Expected travel time between towns:

 T_{ii} = expected travel time (minutes) from town i to town j

Town \ Town	A	В	C
A	10	20	30
В	20	10	20
С	30	20	10

MDP: Taxi page 33 MDP: Taxi

Expected travel time (minutes) of trip = $\sum_{j} P_{ij}^{k} T_{ij}$ =

	Cruise	Taxi-stand	Radio call
town A	17.5	21.25	23.75
town B town C	20	11.25	10
town C	17.5	20	25.625

 $v_i^a \triangleq E\left[\mathsf{t}_i^a\right] = \text{expected total duration of a trip (waiting + traveling)}$ when in town i if action a is selected, i.e., $E\left[\mathsf{t}_i^k\right] = W_i^k + \sum P_{ij}^k T_{ij} = W_i^k$

	Cruise	Taxi-stand	Radio call
town A	32.5	41.25	43.75
town B	30	36.25	0
town C	37.5	45	45 625

Average reward per minute for the optimal policy (2,2,2) found by the MDP:

$$\frac{\sum_{i}\sum_{a}c_{i}^{a}x_{i}^{a}}{\sum_{i}\sum_{a}v_{i}^{a}x_{i}^{a}} = \frac{\text{average reward/trip}}{\text{average duration of trip}} = \frac{\$13.3445}{37.2479 \text{ min.}} = \$0.358262/\text{min.}$$

MDP. Taxi page 35

If we treat this as a Semi-Markov Decision Process (**SMDP**), then we can find the policy which maximizes our reward per minute by solving the LP:

$$\begin{aligned} & \text{Minimize} \quad \sum_{i} \sum_{a} c_{i}^{a} u_{i}^{a} \\ & \text{subject to} \quad \sum_{j} u_{j}^{a} = \sum_{i} \sum_{a} p_{ij}^{a} u_{i}^{a} \quad \text{for all states } j \\ & \sum_{i} \sum_{a} v_{i}^{a} u_{i}^{a} = 1 \\ & u_{i}^{a} \geq 0 \quad \text{for all states } i \quad \text{and actions } a \in A_{i} \end{aligned}$$

k:		1	2	3	1	2	1	2	3	
i:		1	1	1	2	2	3	3	3	RHS
Min	Ī	-8	-2.75	-4.25	-16	-15	-7	-4	-4.5	0
		0.5	0.9375	0.75	-0.5	-0.0625	-0.25	-0.125	-0.75	0
		-0.25	-0.75	-0.125	1	0.125	-0.25	-0.75	-0.0625	0
		32.5	41.25	43.75	30	36.25	37.5	45	45.625	1

Note that this tableau differs from that of the LP for MDP only in the **last** row!

DP: Taxi page 37 MDP: Taxi page

Optimal Policy:

State			Action		U{i}
1)	town	A	1)	CRUISE	0.00331263
2)	town	В	2)	TAXISTAND	0.0215321
3)	town	C	j 21	TAXISTAND	1 0 00248447

Average cost/unit time = - 0.35942

The optimal policy (1,2,2) of the SMDP is different in town A, and the average reward per minute is slightly larger (\$0.35942) than that (\$0.358262) of the earlier policy (2,2,2).

In reality, of course, the infinite horizon is a much more problematic assumption in this particular problem!)

MDP: Taxi page 39