

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@caen.uiowa.edu

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm without Discounting

For each policy $R = (k_1, k_2, \dots, k_n)$, define

$\pi^R = \{\pi_1^R, \pi_2^R, \dots, \pi_n^R\}$ to be the steady state distribution using policy R

$g(R) = \sum_{i \in S} \pi_i^R C_i^{k_i}$ to be the expected cost per stage (in steady state) if policy R is used.

$v_i^n(R) =$ total expected cost during the next n stages if the system starts in state i & follows policy R

$$\begin{cases} v_i^n(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j^{n-1}(R) \\ v_i^n(R) \approx n g(R) + v_i(R) \end{cases}$$

$$\Rightarrow n g(R) + v_i(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} [(n-1) g(R) + v_j(R)]$$

$$= C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j(R) + (n-1) g(R) \sum_{j \in S} p_{ij}^{k_i}$$

$$\Rightarrow g(R) + v_i(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j(R) \quad \forall i \in S$$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R .

Step 1: Value Determination

Solve the system of linear equations

$$g(R) + v_i(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j(R) \quad \forall i \in S$$

for $g(R), v_1(R), v_2(R), \dots, v_{n-1}(R)$,

letting $v_n(R) = 0$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm without Discounting

Optimizes the "average", i.e., expected, cost or return per period in steady state.

Policy-Iteration Algorithm with Discounting

Optimizes the present value of all future expected costs

$$v_i^n(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j^{n-1}(R)$$

For "large" n ,

$$v_i^n(R) \approx n g(R) + v_i(R)$$

where

$v_i(R)$ = effect on total expected cost ($\rightarrow \infty$) due to the system's starting in state i

©Dennis Bricker, U. of Iowa, 1998

$$g(R) + v_i(R) = C_i^{k_i} + \sum_{j \in S} p_{ij}^{k_i} v_j(R) \quad \forall i \in S$$

Given a policy R , this will be a system of n linear equations with $n+1$ unknowns, i.e.,

$$g(R), v_1(R), v_2(R), \dots, v_n(R)$$

To find a solution, therefore, we may assign an arbitrary value (usually zero) to one of the unknowns $v_i(R)$, say $v_n(R)$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 2: Policy Improvement

Find an improved policy R' such that

$$R' = (k'_1, k'_2, \dots, k'_{n'})$$

and

$$C_i^{k'_i} + \sum_j p_{ij}^{k'_i} v_j(R) \leq g(R) + v_i(R) \quad \forall i \in S$$

with strict inequality for at least one state i .

If no such improved policy exists, stop; otherwise, return to step 1.

©Dennis Bricker, U. of Iowa, 1998

$$C_i^{k_i} + \sum_j p_{ij}^{k_i} v_j(R) \leq g(R) + v_i(R) \quad \forall i \in S$$

expected cost if at stage 1 we take action k_i , and then follow policy R

expected cost if, beginning at stage 1, we follow policy R

Taxicab Problem

State	Action
1 Town A	1 Cruise
2 Town B	1 Cruise
3 Town C	1 Cruise

$g(R) = -9.2$

i	v_i
1	-1.33333
2	-7.46667
3	0

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise

 $g(R) + v_i(R) = -10.5333$

k	name	C'	ΔC
1	Cruise	-10.5333	0
2	Cabstand	-8.43333	2.1
3	Wait for call	-5.51667	5.01667

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0\text{)}$

Y

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #1, Cruise

 $g(R) + v_i(R) = -16.6667$

k	name	C'	ΔC
1	Cruise	-16.6667	0
2	Cabstand	-21.6167	-4.95

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0\text{)}$

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #1, Cruise

 $g(R) + v_i(R) = -9.2$

k	name	C'	ΔC
1	Cruise	-9.2	0
2	Cabstand	-9.76667	-0.566667
3	Wait for call	-5.96667	3.23333

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0\text{)}$

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

State	Action
1 Town A	1 Cruise
2 Town B	2 Cabstand
3 Town C	2 Cabstand

i	v_i
1	3.87879
2	-12.8485
3	0

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise

 $g(R) + v_i(R) = -9.27273$

k	name	C'	ΔC
1	Cruise	-9.27273	0
2	Cabstand	-12.1439	-2.87121
3	Wait for call	-4.88636	4.38636

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0\text{)}$

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand

 $g(R) + v_i(R) = -26$

k	name	C'	ΔC
1	Cruise	-14.0606	11.9394
2	Cabstand	-26	0

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0\text{)}$

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand
 $g(R) + v_i(R) = -13.1515$

k	name	C'	ΔC
1	Cruise	-9.24242	3.90909
2	Cabstand	-13.1515	0
3	Wait for call	-2.39394	10.7576

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0)$

Taxicab Problem

State	Action
1 Town A	2 Cabstand
2 Town B	2 Cabstand
3 Town C	2 Cabstand

 $g(R) = -13.3445$

i	v_i
1	-1.17647
2	-12.6555
3	0

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #2, Cabstand
 $g(R) + v_i(R) = -12.1681$

k	name	C'	ΔC
1	Cruise	-10.5756	1.59244
2	Cabstand	-12.1681	0
3	Wait for call	-5.53782	6.63025

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0)$

©Dennis Bricker, U. of Iowa, 1998

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand
 $g(R) + v_i(R) = -26$

k	name	C'	ΔC
1	Cruise	-15.4118	10.5882
2	Cabstand	-26	0

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0)$

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand
 $g(R) + v_i(R) = -13.3445$

k	name	C'	ΔC
1	Cruise	-9.86975	3.47479
2	Cabstand	-13.3445	0
3	Wait for call	-4.40861	8.93592

 $C'[k] = \text{cost if action } k \text{ is selected for one stage}$
 $\Delta C[k] = \text{improvement (if } < 0)$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm with Discounting

Define

$$\beta = \text{discount factor} = \frac{1}{1+r}$$

where $r = \text{rate of return per stage}$ $v_i(R) = \text{Present Value of all future expected costs, if policy } R \text{ is followed, starting in state } i$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R .

Step 1: Value Determination

Solve the system of linear equations

$$v_i(R) = C_i^{k_i} + \beta \sum_{j \in S} p_{ij}^{k_i} v_j(R) \quad \forall i \in S$$

for $v_1(R), v_2(R), \dots, v_n(R)$

Policy-Iteration Algorithm

Step 2: Policy Improvement

Find an improved policy R' such that

$$R' = (k'_1, k'_2, \dots, k'_n)$$

and

$$C_i^{k'_i} + \beta \sum_j p_{ij}^{k'_i} v_j(R) \leq v_i(R) \quad \forall i \in S$$

(when minimizing)

with strict inequality for at least one state i .If no such improved policy exists, stop;
otherwise, return to step 1.

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998