

Policy-Iteration Algorithm without Discounting

Optimizes the "average", i.e., expected, cost or return per period in steady state.

Policy-Iteration Algorithm with Discounting

Optimizes the present value of all future expected costs

Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm without Discounting

For each policy $R=(k_1,k_2, ..., k_n)$, define

$$\pi^R = \left(\pi_1^R \ , \, \pi_2^R \ , \, \dots , \, \pi_n^R\right)$$
 to be the steady state distribution using policy R

$$\mathbf{g}(R) = \sum_{i \in S} \pi_i^R \, \mathbf{C}_i^{k_i} \quad \text{to be the expected cost per stage}$$
 (in steady state) if policy R is used.

 $\mathbf{v}_{i}^{n}(\mathbf{R})$ = total expected cost during the next n stages if the system starts in state i & follows policy R

$$\mathbf{v}_i^n(R) = \mathbf{C}_i^{k_i} + \sum_{i \in S} \, \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j^{n\text{-}1}(R)$$

For "large" n,

$$\mathbf{v}_i^n(R) \approx \mathbf{n} \ \mathbf{g}(R) + \ \mathbf{v}_i(R)$$

where

 $\mathbf{v}_{\mathbf{i}}(\mathbf{R})$ = effect on total expected cost (to ∞) due to the system's starting in state i

@Dennis Bricker II of Lova 1998

$$\begin{cases} \mathbf{v}_i^n(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j^{n\text{-}1}(R) \\ \\ \mathbf{v}_i^n(R) \approx \mathbf{n} \, \mathbf{g}(R) + \mathbf{v}_i(R) \end{cases}$$

$$\implies \mathbf{n} \, \mathbf{g}(R) + \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \left[(\mathbf{n}\text{-}1) \, \mathbf{g}(R) + \mathbf{v}_j \, (R) \right]$$

$$= \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j \, (R) + (\mathbf{n}\text{-}1) \, \mathbf{g}(R) \sum_{j \in S} \mathbf{p}_{ij}^{k_i}$$

$$\implies \boxed{\mathbf{g}(R) + \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(R) \quad \forall \ i \in S} \end{cases}$$

$$\mathbf{g}(\mathbf{R}) + \mathbf{v}_i(\mathbf{R}) = \mathbf{C}_i^{k_i} + \sum_{j \in \mathbf{S}} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(\mathbf{R}) \quad \forall \ i \in \mathbf{S}$$
 Given a policy R, this will be a system of linear equations with n+1 unknowns, i.e.

Given a policy R, this will be a system of n linear equations with n+1 unknowns, i.e.,

$$g(R),\,v_1(R),\,v_2(R),\,\dots v_n(R)$$

To find a solution, therefore, we may assign an arbitrary value (usually zero) to one of the unknowns $\mathbf{v}_i(R)$, say $\mathbf{v}_n(R)$

@Dennis Bricker, U. of Iowa, 1998

@Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: Value Determination

Solve the system of linear equations

 $\mathbf{g}(R) + \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \, \mathbf{v}_j(R) \qquad \forall \ j \in S$

for g(R), $v_1(R)$, $v_2(R)$, ... $v_{n-1}(R)$,

letting $\mathbf{v}_n(\mathbf{R}) = 0$

Policy-Iteration Algorithm

Step 2: Policy Improvement

Find an improved policy R' such that

$$R' = (k'_1, k'_2, ... k'_n)$$

$$\mathbf{C}_i^{k'_i} + \sum\limits_{j} \; \mathbf{p}_{ij}^{k'_i} \, \mathbf{v}_j(R) \leq \, \mathbf{g}(R) + \, \mathbf{v}_i(R) \quad \, \forall \; \, i \in S$$

with strict inequality for at least one state i. If no such improved policy exists, stop; otherwise, return to step 1.

$$\underbrace{\mathbf{C}_{i}^{k'i} + \sum_{j} \mathbf{p}_{ij}^{k'i} \mathbf{v}_{j}(R)}_{j} \leq \underbrace{\mathbf{g}(R) + \mathbf{v}_{i}(R)}_{j} \quad \forall i \in S$$

stage 1 we take action k_i, and then policy R follow policy R.

expected cost if at expected cost if, beginning at stage 1, we follow

Taxicab Problem

State	Action
1 Town A	1 Cruise
2 Town B	1 Cruise
3 Town C	1 Cruise

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R) + Vi(R) = -10.5333

k	name		C.	ΔC
1 2 3	Cruise Cabstand Wait for	call	-10.5333 -8.43333 -5.51667	0 2.1 5.01667

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #1, Cruise g(R)+Vi(R) = -9.2

k	name	C'	ΔC
1 2 3	Cruise Cabstand Wait for cal	-9.2 -9.76667 -5.96667	0 -0.566667 3.23333

 $C'[k] = cost \ if \ action \ k \ is selected for one stage <math>\Delta C[k] = improvement \ (if < 0)$

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R) + Vi(R) = -9.27273

k	name		C'	ΔC
1 2 3	Cruise Cabstand Wait for	call	-9.27273 -12.1439 -4.88636	0 ⁻ 2.87121 4.38636

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #1, Cruise g(R) + Vi(R) = -16.6667

k	name	C'	ΔC
1 2	Cruise	-16.6667	0
	Cabstand	-21.6167	-4.95

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

State	Action	
1 Town A	1 Cruise	
2 Town B	2 Cabstand	
3 Town C	2 Cabstand	

g(R) = -13.1515

i	Vi
1 2 3	3.87879 -12.8485 0

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand g(R)+Vi(R) = -26

k	name	C'	ΔC
1 2	Cruise	-14.0606	11.9394
	Cabstand	-26	0

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand g(R)+Vi(R) = ~13.1515

k	name		C'	ΔC
123	Cruise Cabstand Wait for	call	-9.24242 -13.1515 -2.39394	3.90909 0 10.7576

C'Ikl = cost if action k is selected for one stage $\Delta \texttt{CIkl}$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #2, Cabstand g(R)+Vi(R) = ~12.1681

k	name		C'	ΔC
1	Cruise	call	-10.5756	1.59244
2	Cabstand		-12.1681	0
3	Wait for		-5.53782	6.63025

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand

g(R) + Vi(R) = -13.3445

[k	name		C'	ΔC
	1 2 3	Cruise Cabstand Wait for	call	-9.86975 -13.3445 -4.40861	3.47479 0 8.93592

C'[k] = cost if action k is selected for one stage $\Delta \text{C[k]}$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: Value Determination

$$\mathbf{v}_{i}(R) = \mathbf{C}_{i}^{k_{i}} + \beta \sum_{j \in S} \mathbf{p}_{ij}^{k_{i}} \mathbf{v}_{j}(R) \quad \forall i \in S$$

for $\mathbf{v}_1(R), \, \mathbf{v}_2(R), \, \dots \, \mathbf{v}_n(R)$

Taxicab Problem

State	Action
1 Town A	2 Cabstand
2 Town B	2 Cabstand
3 Town C	2 Cabstand

@Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

Current Policy: action #2, Cabstand g(R)+Vi(R) = -26

k	name	C'	ΔC
1 2	Cruise Cabstand	-15.4118 -26	10.5882

C'[k] = cost if action k is selected for one stage $\Delta C[k]$ = improvement (if <0)

@Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm with Discounting

Define

$$\beta$$
 = discount factor = $\frac{1}{1+r}$

where \mathbf{r} = rate of return per stage

v_i(R) = Present Value of all future expected costs, if policy R is followed, starting in state i

@Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 2: Policy Improvement

Find an improved policy R' such that

$$R' = (k'_1, k'_2, ..., k'_n)$$

and

$$\begin{array}{ll} C_i^{k'_i} + & \beta \sum_j \ p_{ij}^{k'_i} \ v_j(R) \leq v_i(R) & \forall \ i \in S \\ & & \text{(when minimizing.)} \end{array}$$

with strict inequality for at least one state i. If no such improved policy exists, stop; otherwise, return to step 1.