Cf. Linn Sennott, Stochastic Dynamic Programming and the Control of Queueing Systems, Wiley Series in Probability \& Statistics, 1999

Assume that the state space of a Markov Decision Problem (MDP) is countable but infinite.

Four different optimization criteria are considered:

Cases	Expected discounted costs	Average cost/stage
Finite horizon	1	2
Infinite horizon	3	4

1. Expected discounted cost over finite horizon
2. Expected cost/stage over finite horizon
3. Expected discounted cost over infinite horizon
4. Expected cost/stage over infinite horizon

D.L.Bricker, 2001 Deppof Industral En En
 Dept of Industrial Engineriby The Univerity of lown

MDP--Approximaing Sequences \qquad D.Bricker

MDP - Approximating Sequences page 2
D.Bricker

Denote the original MDP by Δ, with infinite (but countable) state space S .
It is common, for computational purposes, to approximate Δ by a MDP with finite state space of size N .

As N is increased, the approximating MDP is "improved".
We are interested in the limit as $\mathrm{N} \rightarrow \infty$.

In order to define a valid MDP, this excess probability must be

4
The usual way to define an approximating distribution is by means of an augmentation procedure:

Suppose that in state $i \in S_{N}$, action $a \in A_{i}$ is chosen.

For $j \in S_{N}$ the probability $P_{i j}^{a}$ is unchanged.
Suppose, however, that $P_{i r}^{a}>0$ for some $r \notin S_{N}$,
i.e., there is a positive probability that the system makes a transition to a state outside of S_{N}.

This is said to be excess probability associated with (i,a,r,N).

Aproximaines
page 5
D.Bricker

Definition: The approximating sequence $\left\{\Delta_{N}\right\}$ is an
OTADADOTN AOMMMAOSGAN augmentation-type approximating sequence (ATAS) if the approximating distributions are defined as follows:

$$
P_{i j}^{a}(N)=P_{i j}^{a}+\sum_{r \in S_{N}} P_{i j}^{a} q(i, a, r, N)
$$

Notes:

- The original probabilities on S_{N} are never decreased, but may be augmented by addition of portions of excess probability.
- Often it is the case that there is some distinguished state z such that for each (i,a,r,N), $q_{z}(i, a, r, N)=1$
(That is, all excess probability is sent to the distinguished state.)
distributed among the states of S_{N} according to some specified
augmentation distribution $\mathrm{q}_{\mathrm{j}}(\mathrm{i}, \mathrm{a}, \mathrm{r}, \mathrm{N})$,
where

$$
\sum_{j} q_{j}(i, a, r, N)=1 \text { for each (i,a,r,N). }
$$

The quantity $\mathrm{q}_{\mathrm{j}}(\mathrm{i}, \mathrm{a}, \mathrm{r}, \mathrm{N})$ specifies what portion of the excess probability $P_{i r}^{a}$ is redistributed to state $j \in S_{N}$

Aproximaning Scupences

Imfinife Hinilizon Case

For the discounted-cost MDP Δ with infinite horizon, and infinite state space S, le

$$
V_{\beta}(i)=\min _{a \in A_{i}}\left\{C_{i}^{a}+\beta \sum_{j} P_{i j}^{a} V_{\beta}(j)\right\}, \quad \forall j \in S
$$

Suppose we have an approximating sequence $\left\{\Delta_{N}\right\}$, with corresponding optimal values V_{β}^{N}

Major questions of interest:

- When does $\lim _{N \rightarrow \infty} V_{\beta}^{N}(i)=V_{\beta}(i)<+\infty$?
- If π^{N} is the optimal policy for Δ_{N}, when does π^{N} converge to an optimal policy for Δ ?

MDP - Approximating Sequences page 8

Infinite Horizon Discounted Cost Assumption DC(β):
For $\mathbf{i} \in \mathrm{S}$ we have
and

$$
\limsup _{N \rightarrow \infty} V_{\beta}^{N}(i) \equiv W_{\beta}(i)<+\infty
$$

$$
W_{\beta}(i) \leq V_{\beta}(i)
$$

Theorem (Sennott, page 76):
The following are equivalent:

- $\lim _{N \rightarrow \infty} V_{\beta}^{N}=V_{\beta}<+\infty$
- Assumption DC(β) holds.

If one (\& therefore both) of these conditions are valid, and $\left\{\begin{array}{c}N \\ \beta\end{array}\right\}$ is an optimal stationary policy for ${ }_{N}$. Then any limit point of the sequence is optimal for Δ.
\qquad

Exampilen

Inweentory Repllenilishmemt

Consider again our earlier application to inventory replenishment:

- The daily demand is random, with Poisson distribution having mean of 3 units.
- The inventory on the shelf (the state) is counted at the end of each business day, and a decision is then made to raise the inventory level to S at the beginning of the next business day.
- There is a fixed cost $A=10$ of placing an order, a holding cost $h=1$ for each item in inventory at the end of the day, and a penalty $p=5$ for each unit backordered.

We imposed limits of 7 units of stock-on-hand and 3 backorders, and found that the policy which minimizes the expected cost/ day is of type $\mathbf{(s , S})=(\mathbf{2}, \mathbf{6})$, i.e., if the inventory position is 2 or less, order enough to bring the inventory level up to 6 .

| MDP - Approximaing Sequences | page 11 |
| :--- | :--- |\quad D.Bricker

A pproximating Sequence M ethod

$\mathrm{N}=1$
To define the first MDP in the sequence, Δ_{1}, use state space

$$
S_{1}=\{-2,-1,0,1,2, \ldots 6\},
$$

i.e., assume a limit of 2 backorders and 6 units in stock. The optimal policy is $(\mathbf{s}, \mathbf{S})=(\mathbf{2}, \mathbf{6})$

State	Action	V
$\mathrm{BO}=$ two	$\mathrm{SOH}=6$	72.3583
$\mathrm{BO}=$ one	$\mathrm{SOH}=6$	57.3583
SOH= zero	$\mathrm{SOH}=6$	52.3583
SOH= one	$\mathrm{SOH}=6$	53.3583
$\mathrm{SOH}=$ two	$\mathrm{SOH}=2$	52.4908
$\mathrm{SOH}=$ three	$\mathrm{SOH}=3$	50.4510
$\mathrm{SOH}=$ four	$\mathrm{SOH}=4$	49.2100
SOH= five	$\mathrm{SOH}=5$	48.5763
SOH= six	$\mathrm{SOH}=6$	48.3583

P--Approximaing Scquences
page 13

$\mathrm{N}=3$

We now increase the state space to $S_{3}=\{-4,-3,-2,-1,0,1,2, \ldots 7,8\}$,
i.e., assume a limit of 4 backorders and 8 units in stock, and find that the optimal policy is $\mathbf{(s , S} \mathbf{S})=(\mathbf{2}, \mathbf{8}):$

State	Action	V
$\mathrm{BO}=$ four	$\mathrm{SOH}=8$	130.6728
$\mathrm{BO}=$ three	$\mathrm{SOH}=8$	95.6728
$\mathrm{BO}=$ two	$\mathrm{SOH}=8$	70.6728
$\mathrm{BO}=$ one	$\mathrm{SOH}=8$	55.6728
SOH= zero	$\mathrm{SOH}=8$	50.6728
SOH= one	$\mathrm{SOH}=8$	51.6728
SOH= two	$\mathrm{SOH}=8$	52.6728
SOH= three	$\mathrm{SOH}=3$	51.8500
SOH= four	$\mathrm{SOH}=4$	49.3778
SOH= five	$\mathrm{SOH}=5$	48.4689
SOH= six	$\mathrm{SOH}=6$	48.2269
SOH= seven	$\mathrm{SOH}=7$	48.3086
SOH= eight	SOH=8	48.6728

The following theorem of Sennot (p. 77) gives a sufficient condition for $\mathbf{D C}(\beta)$ to hold (and hence for the convergence of the approximating sequence method):

Theorem:

Assume that there exists a finite constant B such that $C_{i}^{a} \leq B$ for every $i \in S$ and $a \in A_{i}$. Then $\mathbf{D C}(\beta)$ is valid for $\beta \in(0,1)$

Consider the problem with infinitely-many states, i.e.,

$$
S=\{-\infty, \ldots-2,-1,0,1,2,3,4, \ldots+\infty\}
$$

and the objective of minimizing the discounted cost, with discount factor

$$
\beta=\frac{1}{1+0.20}=0.833333 .
$$

What is the optimal replenishment policy?

$\mathrm{N}=2$

We now increase the state space to

$$
S_{2}=\{-3,-2,-1,0,1,2, \ldots 6,7\},
$$

i.e., assume a limit of 3 backorders and 7 units in stock, and find that the optimal policy is $\mathbf{(s , S)} \mathbf{S} \mathbf{(2 , 7)}$:

State	Action	\mathbf{V}
$\mathrm{BO}=$ three	$\mathrm{SOH}=7$	98.2503
$\mathrm{BO}=$ two	$\mathrm{SOH}=7$	73.2503
$\mathrm{BO}=$ one	$\mathrm{SOH}=7$	58.2503
$\mathrm{SOH}=$ zero	$\mathrm{SOH}=7$	53.2503
$\mathrm{SOH}=$ one	$\mathrm{SOH}=7$	54.2503
$\mathrm{SOH}=$ two	$\mathrm{SOH}=7$	55.2503
$\mathrm{SOH}=$ three	$\mathrm{SOH}=3$	53.2667
$\mathrm{SOH}=$ four	$\mathrm{SOH}=4$	51.3011
$\mathrm{SOH}=$ five	$\mathrm{SOH}=5$	50.4785
$\mathrm{SOH}=$ six	$\mathrm{SOH}=6$	50.2025
SOH= seven	$\mathrm{SOH}=7$	50.2503

MDP - Approximating Sequences page 14
D.Bricker

$\mathrm{N}=4$

We now increase the state space to $S_{4}=\{-5, \ldots,-1,0,1,2, \ldots, 9,10\}$, and find that the optimal policy is $(\mathbf{s}, \mathbf{S})=(\mathbf{2}, \mathbf{1 0})$:

State	Action	V
BO= five	SOH=10	176.7718
$\mathrm{BO}=$ four	$\mathrm{SOH}=10$	131.7718
$\mathrm{BO}=$ three	$\mathrm{SOH}=10$	96.7718
$\mathrm{BO}=$ two	$\mathrm{SOH}=10$	71.7718
$\mathrm{BO}=$ one	$\mathrm{SOH}=10$	56.7718
$\mathrm{SOH}=$ zero	$\mathrm{SOH}=10$	51.7718
$\mathrm{SOH}=$ one	$\mathrm{SOH}=10$	52.7718
$\mathrm{SOH}=$ two	$\mathrm{SOH}=10$	53.7718
$\mathrm{SOH}=$ three	$\mathrm{SOH}=3$	53.5004
$\mathrm{SOH}=$ four	$\mathrm{SOH}=4$	50.7828
SOH= five	$\mathrm{SOH}=5$	49.8438
SOH= six	$\mathrm{SOH}=6$	49.6259
SOH= seven	$\mathrm{SOH}=7$	49.7289
SOH= eight	$\mathrm{SOH}=8$	50.1051
SOH= nine	$\mathrm{SOH}=9$	50.7841
SOH= ten	$\mathrm{SOH}=10$	51.7718

The following theorem of Sennot (p. 45) gives a sufficient condition for $\mathbf{F H}(\boldsymbol{\beta}, \mathbf{n})$ to hold (and hence for the convergence of the approximating sequence method):

Theorem:
Suppose that there exists a finite constant B such that

$$
\begin{aligned}
C_{i}^{a} & \leq B \\
F_{i} & \leq B
\end{aligned}
$$

where F_{i} is the terminal cost of state $\mathrm{i} \in \mathrm{S}$. Then $\mathbf{F H}(\boldsymbol{\beta}, \mathbf{n})$ holds for all β and $n \geq 1$.
page 21

