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Assume that the state space of a Markov Decision Problem (MDP)

is countable but infinite.

Four different optimization criteria are considered:

Expected discounted cost over finite horizon
Expected cost/stage over finite horizon
Expected discounted cost over infinite horizon
Expected cost/stage over infinite horizon
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Denote the original MDP by D, with infinite (but countable) state
space S.
It is common, for computational purposes, to approximate Dby a

MDP with finite state space of size N.

As N is increased, the approximating MDP is "improved".

We are interested in the limit as N® ¥.
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Definition

Consider the sequence {D,} of MDPs, where

N3 N

- the state space of D, is the nonempty finite set S, 1 S,
- the action set for state il S is A, and
- the cost for action al A is C}.

Let {S,} be an increasing sequence of subsets of S such

NN
that
. I;—Z‘SN =S, and
- for each il Sy and al A, PZ(N) is a probability
distribution on S, such that limps(N)=F?

Then {DN}Nz Nuis, an approximating sequence (AS) for the

MDP D, and N is the approximation level.
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In order to define a valid MDP, this excess probability must be
4 The usual way to define an approximating distribution is by A distributed among the states of Sy according to some specified
&% means of an augmentation procedure: augmentation distribution qj(i,a,r,N),
o g )
3 #F® \here
- Suppose that in state il S, action al A is chosen. ~» aq; (|,a, r, N) =1 for each (i,a,r,N).
z z .
& R . i & e quantity qgj(i,a,r,N) specifies what portion of the excess
& For jl S, the probability B is unchanged. L 3 . ) o .
7 # probability P} is redistributed to state jI S.
o Suppose, however, that R} >0 for some r1 S, o
~
” i.e., there is a positive probability that the system makes a
»
~ transition to a state outside of Sn. Pl
il o
€ This is said to be excess probability associated with (i,a,r,N). <
<
e e
o o
o ar
= r
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Definition: The approximating sequence {DN} is an
augmentation-type approximating sequence (ATAS) if the
approximating distributions are defined as follows:

Pia(N):F?iaJ“é Rq(i.a,r.N)

Notes:

- The original probabilities on Sy are never decreased, but
may be augmented by addition of portions of excess
probability.

- Often it is the case that there is some distinguished state z
such that for each (i,a,r,N), g,(i,ar,N)=1

(That is, all excess probability is sent to the distinguished state.)
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Infinite Horlzon Case

For the discounted-cost MDP D with infinite horizon, and infinite

state space S, let

Suppose we have an approximating sequence {DN} , with
corresponding optimal values V,"
Major questions of interest:

- When does Li@rgvb”(i):vb (i)<+¥?

- If p" is the optimal policy for Dy, when does p" converge to an

optimal policy for D?
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Infinite Horizon Discounted Cost Assumption DC(b):

For il S we have
limsupV,' (i)° W, (i) <+¥
N®¥

and
w, (i) £V, (i)

Theorem (Sennott, page 76):

The following are equivalent:
H N _
LI@rth =V, <+¥

- Assumption DC(b) holds.

If one (& therefore both) of these conditions are valid, and { Q‘} is

an optimal stationary policy for . Then any limit point of the
sequence is optimal for D.
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The following theorem of Sennot (p. 77) gives a sufficient
condition for DC(b) to hold (and hence for the convergence of the
approximating sequence method):

Theorem:

Assume that there exists a finite constant B such that

C?£B for every il S and al A. Then DC(b) is valid for
bT (0,1)
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Examples
Inventory Replenishment

Consider again our earlier application to inventory replenishment:

" The daily demand is random, with Poisson distribution having mean
of 3 units.

" The inventory on the shelf (the state) is counted at the end of each
business day, and a decision is then made to raise the inventory level to
S at the beginning of the next business day.

" There is a fixed cost A=10 of placing an order, a holding cost h=1 for
each item in inventory at the end of the day, and a penalty p=5 for each
unit backordered.

We imposed limits of 7 units of stock-on-hand and 3 backorders, and
found that the policy which minimizes the expected cost/day is of type
(s,S) = (2, 6), i.e., if the inventory position is 2 or less, order enough to
bring the inventory level up to 6.
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Consider the problem with infinitely-many states, i.e.,
S={-¥..-2-1,01,234,..+¥}
and the objective of minimizing the discounted cost, with discount factor

b=—t -0833333.
14020

What is the optimal replenishment policy?
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Approximating Sequence Method

To define the first MDP in the sequence, D1, use state space
S$1={2-1,0,1,2,..6},
i.e., assume a limit of 2 backorders and 6 units in stock. The optimal

policy is (s, S) = (2, 6):

State | Action | \
BO= two | SO 6 | 72.3583
BO= one | SoH= 6 | 57.3583
SOH= zero | SOH= 6 | 52.3583
SOH= one | SOH= 6 | 53.3583
SOH= two | SOH=E 2 | 52.4908
SOH= three | SOH= 3 | 50.4510
SOH= four | SOH= 4 | 49.2100
SOH= five | SOH= 5 | 48.5763
SOH= six | SOH= 6 | 48.3583
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N=2
We now increase the state space to
S2={-3,-2,-1,0,1,2,..6, 7},
i.e., assume a limit of 3 backorders and 7 units in stock, and find that the

optimal policy is (s, S) = (2, 7):

State | Action | vV
BO= three | SO 7 | 98.2503
BO= two | SoH= 7 | 73.2503
BO= one | SoH= 7 | 58.2503
SOH= zero | SOH= 7 | 53.2503
SOH= one | SOH= 7 | 54.2503
SOH= two | SOH= 7 | 55.2503
SOH= three | SOH= 3 | 53.2667
SOH= four | SOH= 4 | 51.3011
SOH= five | SOH= 5 | 50.4785
SOH= six | SOH= 6 | 50.2025
SOH= seven | SOH= 7 | 50.2503
MDP-- Approximating Sequences page 14 D.Bricker

We now increase the state space to S;={-4,-3,-2,-1,0,1,2,...7, 8},
i.e., assume a limit of 4 backorders and 8 units in stock, and find that the

optimal policy is (s, S) = (2, 8):

State ] Action | V
BO= four | SO 8 | 130.6728
BO= three | SOH= 95. 6728
BO= two |  SoH= 70.6728
BO= one | SOH= 55.6728
SOH= zero | SOH= 50. 6728
SOH= one | SOH= 51.6728
SOH= two | SOH= . 6728

SOH= three | SOH=
SOH= four | SOH=
SOH= five | SOH=
SOH= six | SOH=
SOH= seven | SOH=
SOH= eight | SOH=

51. 8500
49. 3778
48. 4689
48. 2269
48. 3086
48. 6728

0~ O UTA L0 0 0
a
N

MDP -~ Approximating Sequences page1s D.Bricker

N=4

We now increase the state space to S;={-5,...,-1,0,1,2,..., 9,10},
and find that the optimal policy is (s, S) = (2, 10):

State ] Action | vV
BO= five | SOH= 10 | 176.7718
BO= four | SOH= 10 | 131.7718
BO= three | SOH= 10 96. 7718
BO= two | SOH= 10 71.7718
BO= one | SOH= 10 56. 7718
SOH= zero | SOH= 10 51.7718
SOH= one | SOH= 10 52.7718
SOH= two | SOH= 10 53. 7718
SOH= three | SOH= 3 53. 5004
SOH= four | SOH= 4 50. 7828
SOH= five | SOH=5 49. 8438
SOH= si x | SOH= 6 49. 6259
SOH= seven | SOH= 7 49. 7289
SOH= eight | SOH= 8 50. 1051
SOH= nine | SOH= 9 50. 7841
SOH=ten | SOH= 10 51. 7718
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Increase the state spaceto Ss={-6,...,-1,0,1,2,.. 11, 12}.
The optimal policy is again (s, S) = (2, 10):

State | Action | Vv
BO= si x | SOH= 10 231. 8900
BO= five | SOH= 10 176. 8900
BO= four | SOH= 10 131. 8900
BO= three | SOH= 10 96. 8900
BO= two | SOH= 10 71. 8900
BO= one | SOH= 10 56. 8900
SOH= zero | SOH= 10 51. 8900
SOH= one | SOH= 10 52. 8900
SOH= two | SOH= 10 53. 8900
SOH= three | SOH= 3 53. 7796
SOH= four | SOH= 4 50. 9538
SOH= five | SOH= 5 49. 9933
SOH= si x | SOH= 6 49.7723
SOH= seven | SOH=7 49. 8706
SOH= eight | SOH= 8 50. 2390
SOH= nine | SOH= 9 50. 9098
SOH= ten | SOH= 10 51. 8900
SOH= el even | SOH= 11| 53.1630
SOH= twelve | SOH= 12 | 54.7082
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Increase the state spaceto Ss={-7,...,-1,0,1,2, ... 11, 15}.
The optimal policy is again (s, S) = (2, 10):

State | Action | Vv
BO= seven | SOH= 10 | 296.9292
BO= si x | SOH= 10 231.9292
BO= five | SoH= 10 176. 9292
BO= four | SOH= 10 131. 9292
BO= three | SOH= 10 96. 9292
BO= two | SOH= 10 71.9292
BO= one | SOH= 10 56. 9292
SOH= zero | SOH= 10 51. 9292
SOH= one | SOH= 10 52.9292
SOH= two | SOH= 10 53.9292
SOH= three | SoH= 3 53. 8742
SOH= four | SOH= 4 51. 0097
SOH= five | SOH= 5 50. 0426
SOH= fourteen | SOH= 14 | 58.5790
SOH= fifteen | SOH= 15| 60.8442

The optimal policies have converged to (s, S) = (2, 10)

MDP -~ Approximating Sequences page 18 D.Bricker

Finite Horizen Case

For the MDP D with finite horizon n and infinite state space S, let

Vh‘n(i):"aﬁ“&”

e

Cl+bd F;;vhm,l(j)g, "jl s,ns1
i

Suppose we have an approximating sequence {DN} , with
corresponding optimal values vy,
Major questions of interest:
* When does limv,), (i)=v. (i)?
If p" is the optimal policy for Dy, when does p" converge to an
optimal policy for D?

Finite Horizon Assumption FH(b,n):
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For il S we have

limsupvy', © w,
N®¥ :

o < H¥

and
w,, (i) v, , (i)

Theorem (Sennott, page 43):

Let n31 be fixed. The following are equivalent:

H N
= <+
limvy, =v, , <+¥

- Assumption FH(b,n) holds.
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The following theorem of Sennot (p. 45) gives a sufficient
condition for FH(b,n) to hold (and hence for the convergence of

the approximating sequence method):

Theorem:

Suppose that there exists a finite constant B such that
C*EB
F £B

where Fi is the terminal cost of state il S. Then FH(b,n)

holds for all b and n31.
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