

Given a first-stage decision x_{0}, define a function $Q_{k}\left(x_{0}\right)$ equal to the optimum of the second stage for each scenario $\mathrm{k}=1, \ldots \mathrm{~K}$:

$$
Q_{k}\left(x_{0}\right)=\min q_{k} y_{k}
$$

subject to

$$
W y_{k}=h_{k}-T_{k} x_{0}
$$

$$
y_{k} \geq 0
$$

Then $P\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{k} p_{k} Q_{k}\left(x_{0}\right)$ provides us with an upper bound on the optimal value Z.
L-Shaped (Benders') Method page 9 D.L. Bricker

We can eliminate λ_{k} (the dual variables for the constraint $x_{k}=x_{0}$) by using the equality constraint to obtain $\lambda_{k}=-\pi_{k} T_{k}$ and

$$
\begin{aligned}
& Q_{k}\left(x_{0}\right)=\operatorname{Max}\left(h_{k}-T_{k} x_{0}\right) \pi_{k} \\
& \text { subject to } \\
& \quad \pi_{k} W \leq q_{k}
\end{aligned}
$$

The original problem now reduces to

$$
Z=\underset{x_{0} \in X}{\operatorname{Minimize}} c x_{0}+\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)
$$ of $Q_{k}\left(x_{0}\right)$ to provide an alternate method for evaluating Z, namely

$$
\begin{aligned}
& Z=\operatorname{Min} c x_{0}+\sum_{k=1}^{K} p_{k} \theta_{k} \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{i}=1, \ldots \mathrm{I} ; \mathrm{k}=1, \ldots \mathrm{~K}
\end{aligned}
$$

While it is possible in principle to solve the problem using Benders' Complete Master Problem,
in practice the magnitude of the number of dual extreme points makes it prohibitively expensive.

Benders' algorithm solves the current Partial Master Problem, obtaining

- x_{0} (a "trial solution") and
- an underestimate $\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)$ of the associated expected second-stage cost.
The actual expected second-stage cost, i.e., $\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)$, is then evaluated by solving the second-stage problem for each scenario. Additional constraints are added to the Partial Master Problem to complete the iteration.

If, as before, we introduce the variables x_{k} for each scenario k , together with the nonanticipativity constraints, we obtain the second-stage problem for scenario k ,

$$
\begin{aligned}
& \text { Minimize } q_{k} y_{k} \\
& \text { subject to } \\
& T_{k} x_{k}+W y_{k}=h_{k}, \\
& x_{k}=x_{0}, \\
& y_{k} \geq 0
\end{aligned}
$$

whose linear programming dual is the linear program

$$
\begin{aligned}
& \text { Maximize } h_{k} \pi_{k}+x_{0} \lambda_{k} \\
& \text { subject to: } \\
& \pi_{k} T_{k}+\lambda_{k} I=0 \\
& \pi_{k} W \leq q_{k}
\end{aligned}
$$

It is not necessary to introduce the variables x_{k}, but it is done in anticipation of later defining a cross-decomposition algorithm, which is a hybrid of Benders' decomposition and Lagrangian relaxation.
$\begin{array}{lll}\text { L-Shaped (Benders') Method page } 10 & \text { D.L. Bricker }\end{array}$

Denote by $\Pi_{k}=\left\{\pi_{k}: W^{T} \pi_{k} \leq q_{k}\right\}$ the polyhedral feasible region of the second-stage problem for scenario k .
Denote by $\hat{\pi}_{k}^{i}$ the $\mathrm{i}^{\text {th }}$ extreme point of $\Pi_{k}, i=1,2, \ldots \mathrm{I}_{\mathrm{k}}$.

By enumerating the large (but finite) number of extreme points of Π_{k}, we can write

$$
Q_{k}\left(x_{0}\right)=\max _{i=1, \ldots I_{k}}\left\{\hat{\pi}_{k}^{i}\left(h_{k}-T_{k} x_{0}\right)\right\}=\max _{i=1, \ldots I_{k}}\left\{\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right\}
$$

where $\lambda_{k}^{i}=-\hat{\pi}_{k}^{i} T_{k}$ and $\hat{\alpha}_{k}^{i}=\hat{\pi}_{k}^{i} h_{k}$.
(Note that this demonstrates that $Q_{k}\left(x_{0}\right)$ is a piecewise-linear convex function.)
\qquad

However, if a subset of the dual extreme points of Π_{k} are
available, e.g., $\hat{\pi}_{k}^{i}, i=1, \ldots M_{k}$ where $M_{k}<I_{k}$, then we obtain an underestimate of $Q_{k}\left(x_{0}\right)$, which we denote by

$$
\underline{Q}_{k}\left(x_{0}\right)=\max _{i=1, \ldots M_{k}}\left\{\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right\}
$$

Thus, by making use of dual information obtained after M evaluations of $Q_{k}\left(x_{0}\right)$, we obtain a Partial Master Problem,

$$
\begin{aligned}
& \Phi_{\mathrm{M}}=\operatorname{Min} c x_{0}+\sum_{k=1}^{K} p_{k} \theta_{k} \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{i}=1, \ldots \mathrm{M} ; \mathrm{k}=1, \ldots \mathrm{~K}
\end{aligned}
$$

which provides a lower bound on the solution of Z.
\qquad

At each iteration of Benders' algorithm, then,

- the subproblem solution
$P\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} Q_{k}\left(x_{0}\right)$
provides an upper bound for Z, and
- the Partial Master Solution

$$
\Phi_{M}=\underline{P}\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)
$$

provides a lower bound for Z.

Benders' Algorithm-- "Uni-cut" Version

In the uni-cut version, at each iteration i the K constraints

$$
\theta_{k} \geq \hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}, \mathrm{k}=1, \ldots \mathrm{~K}
$$

are aggregated before adding them to the Partial Master

Problem:

$$
\begin{aligned}
& Z=\operatorname{Min} c x_{0}+\theta \\
& \text { subject to } x_{0} \in X, \text { and } \\
& \theta \geq \sum_{k=1}^{K} p_{k}\left[\hat{\lambda}_{k}^{i} x_{0}+\hat{\alpha}_{k}^{i}\right], \mathrm{i}=1, \ldots \mathrm{I}
\end{aligned}
$$

Generally, more iterations are required, but there are fewer cuts ($\&$ less computation) in each Partial Master Problem.

Benders' algorithm is as follows:

Step 0 . Select an arbitrary $x_{0} \in X$. Initialize the upper bound $\bar{Z}=+\infty$ and lower bound $\underline{Z}=-\infty$.

Note: This allows the user to make use of knowledge about his/her problem by using an initial "guess" at the solution.
Another alternative is to solve the Expected-Value LP problem to obtain the initial x_{0} :

$$
\begin{aligned}
& \text { Minimize } c x \\
& \text { subject to } A x=b \text {, } \\
& {\left[\sum_{k=1}^{K} p_{k} T_{k}\right] x+W y=\sum_{k=1}^{K} p_{k} h_{k}} \\
& x \geq 0
\end{aligned}
$$

L-Shaped (Benders) Method page 18 D.L. Bricker

Step 2a. Solve the Partial Master Problem to obtain

- an optimal x_{0}, and
- an underestimate $\underline{P}\left(x_{0}\right)=c x_{0}+\sum_{k=1}^{K} p_{k} \underline{Q}_{k}\left(x_{0}\right)$ of the expected cost $P\left(x_{0}\right)$.

2b. Update the lower bound, $\underline{Z}=\max \left\{\underline{Z}, \underline{P}\left(x_{0}\right)\right\}$.
2c. If $\bar{Z}-\underline{Z} \leq \varepsilon$, STOP; else return to Step $1 a$.

At each iteration, the number of constraints (and therefore the size of the basis) of the Partial Master Problem increases, adding to the computational burden.

Furthermore, because constraints have been added, the solution of each partial master problem is generally infeasible in the partial master problem which follows.

For these reasons,
it is preferable to solve the dual of the partial master problem, which is formed by appending a column to the dual of the previous partial master problem,
so that the solution of the dual of the previous Partial Master Problem may serve as an initial basic feasible solution for the Partial Master Problem which follows.

If $X=\{x: A x=b, x \geq 0\}$, the linear programming dual of Benders Partial Master problem is

$$
\begin{gathered}
\Phi_{M}=M a x \quad b u+\sum_{k=1}^{K} \sum_{i=1}^{M} \hat{\alpha}_{k}^{i} v_{k}^{i} \\
\text { subject to } A^{T} u-\sum_{k=1}^{K} \sum_{i=1}^{M} \hat{\lambda}_{k}^{i} v_{k}^{i}=c \\
\sum_{i=1}^{M} v_{k}^{i}=p_{k}, \quad k=1, \ldots K \\
v_{k}^{i} \geq 0, \quad i=1, \ldots M ; k=1, \ldots K
\end{gathered}
$$

(The dual variable u is

unrestricted in sign if X is defined by $A x=b$, but
nonnegative if $A x \geq b$, and
nonpositive if $A x \leq b$.)

It can be shown that, in fact,
this dual of Benders' Master Problem is identical to the Master Problem of Dantzig-Wolfe decomposition applied to the original large-scale deterministic equivalent LP!

