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Consider the Two-stage stochastic  LP with recourse:

( )
1

Minimize
K

k k
k

cx p Q x
=

+ ∑

subject to x X∈

where, for example, the feasible set of first-stage decisions is

defined by

{ }: , 0nX x R Ax b x= ∈ = ≥

Here k indexes the finitely-many possible realizations of a random

vector ξ, with pk the probability of realization k.

The first-stage variables x are to be selected before ξ is observed. 
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Then the set of second-stage decision variables yk are to be

selected, after x has been selected and the kth realization of ξ is

observed. 

The cost of the second stage when scenario k occurs is

( ) { }Minimum : ,  0k k k k kQ x q y W y h T x y= = − ≥

That is, y is a recourse which must be chosen so as to satisfy

some linear constraints in the least costly way.

Note that, in general,

• the coefficient matrices T and W,
• the right-hand-side vector h, and
• the second-stage cost vector q

are all random. 
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We assume that recourse is complete,

i.e., for any choice of x and realization ξ, the set

{ }: ,  0k k k kY y W y h T x y≡ = − ≥ ≠ ∅

(This may require the introduction of artificial variables with large

costs.) 

The objective is to minimize the expected total costs of first and

second stages.
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The deterministic equivalent LP is a large-scale problem which

simultaneously selects

• the first-stage variables x and

• the second-stage variables ky for every realization k

P:  Find
1

minimum 
K

k k k
k

Z cx p q y
=

= + ∑

subject to

, 1, ;k k kT x Wy h k K+ = = …
x X∈

1,ky k K≥ 0, = …

This can be an extremely large LP, with 

K×n2 variables and K×m2 constraints.

L-Shaped (Benders') Method page 6 D.L. Bricker

Benders' Decomposition

Benders' partitioning--known also in stochastic programming as

the "L-Shaped Method"--
achieves separability of the second stage decisions, that is,

a separate LP is solved for each of the K scenarios.

Benders'  partitioning was introduced by J.F. Benders for solving

mixed-integer LP problems, that is, LP problems where some

of the variables are restricted to integers:

Benders, J. F. (1962). “Partitioning Procedures for
Solving Mixed-Variables Programming Problems.”
Numerische Mathematik 4: 238-252.
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The equivalent "L-Shaped Method" was later introduced

independently by van Slyke & Wets for solving stochastic LP with

Recourse (SLPwR) problems:

Van Slyke, R. M. and R. J.-B. Wets (1969).
“L-Shaped linear programs with applications to optimal
control and stochastic programming.”
SIAM Journal of Applied Mathematics 17: 638-663.
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In both cases, the central idea is to partition the variables into 2

sets 

(MIP: integer and continuous variables) or

(SLPwR: 1st stage & 2nd stage variables)

and to project the problem onto the first set of variables.

• MIP: cx ( )
x X

Minimize V x
∈

+

where V(x) = optimal value of continuous LP after integer

variables x have been fixed.

• SLPwR: ( )
x X

Minimize cx Q x
∈

+

where Q(x) = minimal expected cost of second stage

when first-stage variables x have been fixed.
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Given a first-stage decision 0x , define a function ( )0kQ x equal to

the optimum of the second stage for each scenario k=1, …K:

( )0 mink k kQ x q y=

subject to

0k k kWy h T x= −

0ky ≥

Then ( ) ( )0 0 0
1

k

k k
k

P x cx p Q x
=

= + ∑ provides us with an upper bound on

the optimal value Z. 
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If, as before, we introduce the variables kx for each scenario k,

together with the nonanticipativity constraints, we obtain the

second-stage problem for scenario k,

Minimize k kq y
subject to
k k k kT x Wy h+ = ,

0kx x= ,
0ky ≥

whose linear programming dual is the linear program

0Maximize k k kh xπ λ+
subject to:

0k k kT Iπ λ+ =

k kW qπ ≤

It is not necessary to introduce the variables kx , but it is done in
anticipation of later defining a cross-decomposition algorithm, which is a
hybrid of Benders' decomposition and Lagrangian relaxation.
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We can eliminate kλ (the dual variables for the constraint 0kx x= )
by using the equality constraint to obtain k k kTλ π= − and

( ) ( )0 0Maxk k k kQ x h T x π= −
subject to

k kW qπ ≤

The original problem now reduces to

( )
0

0 0x 1

Minimize
K

k kX k

Z cx p Q x
∈

=

= + ∑
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Denote by { }: T
k k k kW qπ πΠ = ≤ the polyhedral feasible region of the

second-stage problem for scenario k.

Denote by
i
kπ the ith extreme point of kΠ , i = 1, 2, …Ik. 

By enumerating the large (but finite) number of extreme points of

kΠ , we can write

( ) ( ){ } { }0 0 01,... 1,...
max   max  

k k

i ii
k k kk k ki I i I

Q x h T x xπ λ α
= =

= − = +

where
ii
kk kTλ π= − and

ii
k k khα π= . 

(Note that this demonstrates that ( )0kQ x is a piecewise−linear

convex function.) 
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Benders' (Complete) Master Problem then uses this representation

of ( )0kQ x to provide an alternate method for evaluating Z, namely

0
1

Min
K

k k
k

Z cx p θ
=

= + ∑

subject to 0x X∈ , and

0 ,  i=1, ...I;  k=1, ...K
ii

k kk xθ λ α≥ +

While it is possible in principle to solve the problem using

Benders' Complete Master Problem,

in practice the magnitude of the number of dual extreme points

makes it prohibitively expensive. 
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However,  if a subset of the dual extreme  points of kΠ are

available, e.g., ,  1,
i
k ki Mπ = … where Mk < Ik,  then we obtain an

underestimate of ( )0kQ x , which we denote by

( ) { }
k

0 0i=1, M
max

ii
k k

k
Q x xλ α= +

…

Thus, by making use of dual information obtained after M

evaluations of ( )0kQ x , we obtain a Partial Master Problem,

M 0
1

= Min
K

k k
k

cx p θ
=

Φ + ∑

subject to 0x X∈ , and

0 ,  i=1, ...M;  k=1, ...K
ii

k kk xθ λ α≥ +

which provides a lower bound on the solution of Z. 
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Benders' algorithm solves the current Partial Master Problem,

obtaining

• 0x (a "trial solution") and

• an underestimate ( )0
1

K

k k
k

p Q x
=

∑ of the associated expected

second-stage cost. 

The actual expected second-stage cost, i.e., ( )0
1

K

k k
k

p Q x
=

∑ , is then

evaluated by solving the second-stage problem for each scenario. 

Additional constraints are added to the Partial Master Problem to

complete the iteration.   
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At each iteration of Benders' algorithm, then,

• the subproblem solution

( ) ( )0 0 0
1

K

k k
k

P x cx p Q x
=

= + ∑

provides an upper bound for Z,  and

• the Partial Master Solution

( ) ( )0 0 0
1

K

M k k
k

P x cx p Q x
=

Φ = = + ∑

provides a lower bound for Z. 
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Benders' Algorithm-- "Uni-cut" Version

In the uni-cut version, at each iteration i the K constraints

0 ,  k=1, K
ii

k kk xθ λ α≥ + …

are aggregated before adding them to the Partial Master

Problem:

0MinZ cx θ= +

subject to 0x X∈ , and

0
1

,  i=1, ...I
K ii

k kk
k

p xθ λ α
=

 ≥ +  ∑

Generally, more iterations are required, but there are fewer cuts

(& less computation) in each Partial Master Problem.
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Benders' algorithm is as follows:

Step 0. Select an arbitrary 0x X∈ .  Initialize the upper bound

Z = +∞ and lower bound Z = −∞ .

Note: This allows the user to make use of knowledge about

his/her problem by using an initial "guess" at the solution. 

Another alternative is to solve the Expected−Value LP problem to

obtain the initial x0:

1 1

subject to ,

x 0

K K

k k k k
k k

Minimize cx
Ax b

p T x Wy p h
= =

=

 
+ =  

≥

∑ ∑
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Step 1a. Solve the primal subproblems to evaluate ( )0kQ x and the
optimal dual variables kπ , k=1,…K and compute ( )0P x .

1b. For each scenario, generate an optimality cut.

1c. Uni-cut version: Aggregate the K optimality cuts and add

to  Benders' master problem.

Multi-cut version: Add each of the K optimality cuts to

Benders' master problem.

1d. Update the upper bound, ( ){ }0min ,Z Z P x= .

1e.  If Z Z ε− ≤ , STOP;  else continue to Step 2.
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Step 2a. Solve the Partial Master Problem to obtain

• an optimal 0x , and

• an underestimate ( ) ( )0 0 0
1

K

k k
k

P x cx p Q x
=

= + ∑ of the

expected cost ( )0P x .

2b. Update the lower bound, ( ){ }0max ,Z Z P x= .

2c. If Z Z ε− ≤ , STOP;  else return to Step 1a.
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At each iteration, the number of constraints (and therefore the

size of the basis) of the Partial Master Problem increases,

adding to the computational burden. 

Furthermore, because constraints have been added, the solution

of each partial master problem is generally infeasible in the

partial master problem which follows. 
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For these reasons,

it is preferable to solve the dual of the partial master problem, 

which is formed by appending a column to the dual of the

previous partial master problem,

so that the solution of the dual of the previous Partial Master

Problem may serve as an initial basic feasible solution for the

Partial Master Problem which follows. 

L-Shaped (Benders') Method page 23 D.L. Bricker

If { }: , 0X x Ax b x= = ≥ , the linear programming dual of Benders'

Partial Master problem is

1 1

K M i i
kM k

k i

Max bu vα
= =

Φ = + ∑∑

1 1

subject to
K M iT i

k k
k i

A u v cλ
= =

− =∑∑

1

,   1,
M

i
k k

i

v p k K
=

= =∑ …

,    1, ; 1,i
kv i M k K≥ 0 = =… …

(The dual variable u is

unrestricted in sign if X is defined by Ax=b, but

nonnegative if Ax≥b, and

nonpositive if Ax b≤ .)  
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It can be shown that, in fact,

this dual of Benders' Master Problem is identical to

the Master Problem of Dantzig-Wolfe decomposition applied to

the original large-scale deterministic equivalent LP!


