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Formally, a GRAPH is a pair of sets (V,A) where
* V is non-empty
irreflexive, symmetric relation on V
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A or DIRECTED GRAPH is a

pair of sets (V,A) where A is not symmetric,
that is, the links have directions
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A "pure” graph has no loops, i.e., (v; ,v; ) is
not a valid edge. If the edge set includes
(vi ,vi ), the entity is called a LOOP-GRAPH
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A GRAPH consists of

s acollection of VERTICES or NODES
s acollection of LINKS or EDGES

The number of vertices is the |ORDER

of the graph _
SIZE | of the graph

The number of edges is the

k]

vertar el V/)A = {(v,,v.), (v, ),

Vo= {v,v2.v5.%) ’ (v2,%), (v3,%2)

Ve (Va,V4), (V4 ,VB)

ROER=4 (vi,v3), (v3,91)]
SR =

Three representations of a digraph G=(V A)
where V=(1,2,3,4)and A={(1,2],(2,4), (4,3), (3,1 }}
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If multiple edges are allowed joining pairs
of vertices, then the entity is called a
MULTI-GRAPH
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If each edge of a graph has an associated

number, the entity is called a | NETWORK
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A vertex of a graph is |EVEN§ or |ODD§

according to whether its degree is an even or
odd integer, respectively.
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Theorem: Every graph contains an even number
of odd wertices

A directed graph is |{CONNECTED

if, for everv pair of vertices, x & v, there is a
chain of edges from vertex x to vertex v,

and | STRONGLY CONNECTED if there is a

path of edges from vertex x to vertex v.
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CHAIN :a sequence of vertices,
3 (%921, i, Zaq, - E5 ) Where each
pair (%, %;,,) is an edge

<5\\( 1,2,3,45,3,0)

ELEMENTARY CHAIN (no vertices
1 are repeated)
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{1,2345)
& 5
z 4 CYCLE {a closed chain, ie., the first
! 3 and last vertices of the chain are
the same)
i\ 5
(1,236,1)

1=

f avertex is the number of
edges incident with the vertex

varier  degree
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7heorem:  The sum of the degrees of the vertices
of a graph is twice the number of edges

A graph is | CONNECTED | if, for every pair of

vertices, X & v, there is a chain of edges from
vertex X to vertex y.
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Suppose that we wish to assign directions to
the edges of a connected graph so as to obtain
a STRONGLY-CONNECTED digraph.

Under what conditions, if any, is this possible?
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BRIDGE | of a connected graph is an edge

which, if removed, destroys the graph's

connectedness.
2 &5 Edtge (ot 58 BRIGGE
f } v oF L grand
d g f

Robbins’ Theorem
A graph has a strongly-connected orientation
if and only if
the graph is connected and has no bridge.

DEPTH-FIRST-SEARCH SPANNING TREE E

[0] Select any vertex, and label it "1". Let i & j & 1.

[1] Select any vertex which is connected by a single edge
to the vertex labeled "i". If none, go to step [4];
otherwise, proceed to step [2]

[2] Label the selected vertex "j+1"
[3] Leti<&j<&j+1. Gotostep[1]
[4] Leti&i-1. Ifi=0, STOP; otherwise, go to step [11

Example: Finding a stronglv-connected
orientation of a connected graph
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RJ_ 1 if thereisa chain
i from vertex i to vertex j

Rj _ { 1 if there is a path
0 otherwise !

from vertex i to vertex j
0 otherwise
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Finding a Stronglv-Connected Orientation

® First, find a DEPTH-FIRST-SEARCH SPANNING TREE
® Orient all edges OM the spanning tree from the vertex

with smaller label to the vertex with the larger label

® Orient all edges NOT on the spanning tree from the vertex
with larger label to the vertex with smaller label

1 2 4 1 2 4 1 2 4
8 5 3 6; 5 3 m

Rl Rl P

1 Finding a 1 2 4

Depth-First-Search
Spanning Tree
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AJ: _ J 1 ifthereis an edge (i) AJ: _ J 1 ifthereis anarc(ij)
! 0 otherwise !

0 otherwise

Consider the generalized inner product vV, A~ in APL notation:
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' 22 1001 0
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The value in row i & column j of the matrix
A V. A A

is 1 if there is a path, consisting of 2 arcs,
from vertex i to vertex j,
and 0 otherwise

(AV.AA) V,A A hasal inrow i&column j

if there is a path consisting of 3 arcs from i to j
etc.

How can the reacab ity matrix be compited?

Powers of the Adjacency Matrix E
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1000 1000 0100
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Theorem: If A is the adjacency matrix of
adigraph, then the entry in row i & column j

of AF is the number of paths of length k edges
from vertex i to vertex j
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An APL function to compute the reachability
matrix:

YR<A RBEACH N
[1] -(N=B)/LAST
[2] R < A v.~ A REACH N-1
[3] -0
[4]LAST: R « IDENTITY 11T pA
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