

OD.L. Bricker, U. of IA, 1999

This Hypercard stack prepared by Dennis L Bricker, Dept. of I.E. The University of Iowa

$$\begin{split} \mathbf{y}^{\boldsymbol{*}} &= \prod_{i=1}^{N} \left(\frac{C_{i}}{\delta_{i}^{*}} \right)^{\delta_{i}^{*}} \prod_{k=0}^{p} \boldsymbol{\lambda}^{\boldsymbol{*}}_{k}^{\lambda_{k}^{*}} \\ &= \left(\frac{C_{t}}{\delta_{t}^{*}} \cdot \frac{C_{t}'}{C_{t}'} \right)^{\delta_{i}^{*}} \prod_{i=1}^{N} \left(\frac{C_{i}}{\delta_{i}^{*}} \right)^{\delta_{i}^{*}} \prod_{k=0}^{p} \boldsymbol{\lambda}^{\boldsymbol{*}}_{k}^{\lambda_{k}^{*}} = \left(\frac{C_{t}}{C_{t}} \cdot \frac{C_{t}'}{\delta_{t}^{*}} \right)^{\delta_{t}^{*}} \prod_{i=1}^{N} \left(\frac{C_{i}}{\delta_{i}^{*}} \right)^{\delta_{i}^{*}} \prod_{k=0}^{p} \boldsymbol{\lambda}^{\boldsymbol{*}}_{k}^{\lambda_{k}^{*}} \\ &= \left(\frac{C_{t}}{C_{t}'} \right)^{\delta_{t}^{*}} \left(\frac{C_{t}'}{\delta_{t}^{*}} \right)^{\delta_{t}^{*}} \prod_{i=1}^{N} \left(\frac{C_{i}}{\delta_{i}^{*}} \right)^{\delta_{i}^{*}} \prod_{k=0}^{p} \boldsymbol{\lambda}^{\boldsymbol{*}}_{k}^{\lambda_{k}^{*}} \leq \left(\frac{C_{t}}{C_{t}'} \right)^{\delta_{t}^{*}} \mathbf{y}^{\boldsymbol{*}} \end{split}$$

Dual objective value of new problem, evaluated at the OF Iginal dual solution

Approximating the Effects of Inflation

Suppose that we have found the optimal solution of a GP problem, and we wish to test its sensitivity to an increase in a cost coefficient C . Let

 C_t = original cost coefficient

- δ^* = optimal dual solution of original problem y* = optimal cost of original problem
- C'_t = cost coefficient after inflation
- y*'= optimal cost after inflation

unknown ●D.L. Bricker, U. of IA, 1999

known

$$\mathbf{y^{*}} \leq \left(\frac{\mathbf{C}_{t}}{\mathbf{C}_{t}}\right)^{\boldsymbol{\delta}_{t}^{*}} \mathbf{y^{*\prime}} \implies \mathbf{y^{*\prime}} \geq \left(\frac{\mathbf{C}_{t}}{\mathbf{C}_{t}}\right)^{\boldsymbol{\delta}_{t}^{*}} \mathbf{y^{*\prime}}$$

That is, the minimum cost of the problem has increased by *at least* a factor of $\left(\frac{C_t}{C_t}\right)^{\delta_t^2}$

OD.L. Bricker, U. of IA, 1999

Example

Cargo Ship Design Problem

The optimal cost is \$71517156

The optimal dual variables for terms in the objective function are

$\delta_1^* = 0.129647$	cost of power plants
$\delta_2^* = 0.700782$	cost of ships
δ <u>*</u> =0.16957	cost of fuel

Estimate the optimal cost if the cost of fuel were to increase by 20%.

@D.L. Bricker, U. of IA, 1999

Lower Bound

$$\boldsymbol{y}^{\boldsymbol{*}^{\prime}} \geq \left(\frac{C_{t}^{\prime}}{C_{t}}\right)^{\delta_{t}^{\ast}} \boldsymbol{y}^{\boldsymbol{*}}$$

$$y^{*'} \ge (1.2)^{0.16957} \times 71517156$$

= 1.0314 \times 71517156 = 73762736

i.e., the cost will increase by at least 3.14%.

The optimal primal variables are

14.9566	number of ships
16754.6	cargo load capacity (tons)
12.4553	speed (knots)
0.877868	fraction of time en route

OD.L. Bricker, U. of IA, 1999

Upper Bound

Since the previous solution is still feasible, it provides us with an upper bound on the new cost: 73982323

That is, the cost should not increase more than 3.447%

(since
$$\frac{73982323}{71517156}$$
 = 1.03447)

Thus, we are able to estimate that $73762736 \le y^{*'} \le 73982323$

@D.L. Bricker, U. of IA, 1999

The optimal primal variables are now

14.9556	number of ships
17383.5	cargo load capacity (tons)
12.0047	speed (knots)
0.877928	fraction of time en route

⊜D.L. Bricker, U. of IA, 1999