

Undesirable Properties of GP Dual:

- objective function is nondifferentiable if $\delta_i = 0 \& \lambda_k = 0$ for any i & k
- if $\lambda_k = 0$, then $\delta_i = 0 \ \forall \ i \in [k]$
- it is possible that the dual solution does not provide sufficient information to compute the optimal primal solution.
- for small δ_i , computation of the terms $\delta_i \ln \delta_i$ introduce substantial numerical errors.

©Dennis Bricker, U. of Iowa, 1998

Define functions

$$\begin{split} G_k(\rho) &\equiv \sum\limits_{j \in [k]} \left\{ \; \rho_j \; ln \; c_j - \rho_j \; ln \; \rho_j \right\} & \qquad \textit{entropy} \\ A_{ki}(\rho) &\equiv \; \sum\limits_{j \in [k]} a_{ij} \; \rho_j \end{split}$$

©Dennis Bricker, U. of Iowa, 1998

For fixed values of λ , this is an entropy problem...

For fixed values of ρ , this is an LP problem.

$$\begin{aligned} \text{Max & ln } \mathbf{v}(\delta, \lambda) &= \sum_{i=1}^{N} \left\{ \delta_{i} \text{ ln } \mathbf{c}_{i} - \delta_{i} \text{ ln } \delta_{i} \right\} + \sum_{k=0}^{K} \lambda_{k} \text{ ln } \lambda_{k} \\ \text{subject to} \\ & \sum_{i \in [k]} \delta_{i} = \lambda_{k} \text{ , } k = 0, 1, \cdots K \\ & \sum_{i = [k]}^{N} a_{ij} \delta_{i} = 0, \text{ } j = 1, \cdots M \\ & \text{Orthogonality} \\ \lambda_{0} &= 1 \\ & \delta_{i} \geq 0, \lambda_{k} \geq 0 \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1998

Make a change of variable:

$$\delta_j = \rho_j \lambda_k \text{ for } j \in [k]$$
 so that
$$\rho_j = \frac{\delta_j}{\lambda_k} \text{ if } j \in [k] \& \lambda_k > 0$$

Note that

GP

$$\textstyle\sum\limits_{i\in[k]}\delta_i=\lambda_k\;\;\Longrightarrow\;\;\textstyle\sum\limits_{j\in[k]}\;\rho_j=1\quad\forall\,k$$

©Dennis Bricker, U. of Iowa, 1998

Maximize
$$\sum\limits_{k=0}^{P} \, G_k(\rho) \, \lambda_k$$

subject to

$$\begin{array}{c} \sum\limits_{k=0}^{P} \; A_{k\,i}(\rho)\, \lambda_{k} = 0,\, i\!=\!1,\ldots N \\ \\ \lambda_{0} = 1 \end{array} \label{eq:lambda_k_i}$$

$$\begin{aligned} &\sum_{j \in [k]} \; \rho_j = 1, \; k{=}0,1, \dots K \\ &\lambda_k \geq 0, \; \rho_j \geq 0, \; \; \forall k,j \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1998

That is, $\begin{array}{c|c} \text{Maximize} & \sum\limits_{k=0}^p \gamma_k \lambda_k \\ \text{subject to} & \sum\limits_{k=0}^p \alpha_{kj} \lambda_k = 0, j{=}1, \dots m \\ \\ \hline \\ \textit{Linear} \\ \textit{Program} \\ \textit{in } \lambda & \\ \hline \\ (\gamma_k, \alpha_k) \in S_k \,, \, k{=}0, \dots p \\ \end{array}$

whore

$$S_k \, = \, \left\{ (\gamma, \alpha) | \, \exists \, \, \rho \geq 0 \, , \, \sum_{i \in [k]} \rho_i = 1 \text{ such that } \gamma = G_k(\rho), \, \alpha_j = A_{kj}(\rho) \, \right\}$$

This class of problems, which are linear programming problems in which the columns are also to be selected, was called

Generalized Linear Programs

by George Dantzig, and was used in solving chemical equilibrium problems.

©Dennis Bricker, U. of Iowa, 1998

If t is optimal in the primal, and (ρ, λ) is optimal in the dual,

then $\rho_j > 0$ and $g_k(t) > 0$

 $(\gamma_k, \alpha_k) \in S_k \Leftrightarrow$

of the set!

and

$$ho_{\mathrm{j}} = rac{\mathbf{e}_{\mathrm{j}} \prod\limits_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{t}_{\mathrm{i}}^{\mathrm{a}_{\mathrm{i}\mathrm{j}}}}{\mathbf{g}_{\mathrm{k}}(\mathbf{t})}$$

whether the constraint k is tight or slack!

 $\exists \ \mu_{kn} \geq 0, \, n \in N_k$

such that

Any element of a convex set can be represented

by a convex combination of the extreme points

♦

The dual solution thereby always provides sufficient information to compute the primal solution!

©Dennis Bricker, U. of Iowa, 1998

 $\textstyle\sum_{n\in N_k}\,\mu_{kn}=1$

 $\gamma_k = \sum_{n \in \mathbb{N}_k} \mu_{kn} \hat{\gamma}_k^n$

 $\alpha_k = \sum_{n \in N_k} \mu_{kn} \hat{\alpha}_k^n$

Column-Generating Algorithm

 S_k is a convex set, and is therefore the convex hull of its set of extreme points,

$$ext(S_k) = \{(\hat{\gamma}_k^n, \hat{\alpha}_k^n)\}_{n \in N_k}$$
 For simplicity, we assume that the set of extreme points is countable!

The GLP dual may then be written

or, by defining $u_{kn} \equiv \mu_{kn} \lambda_k$

$$\label{eq:maximize} \begin{array}{ll} \text{Maximize} & \sum\limits_{k=0}^{p} \sum\limits_{n \in N_k} \widehat{\gamma}_k^n \mathbf{u}_{k\,n} \\ \text{subject to} & \sum\limits_{k=0}^{p} \sum\limits_{n \in N_k} \widehat{\alpha}_k^n \mathbf{u}_{k\,n} = 0, \, j{=}1, \cdots m \\ & \sum\limits_{n \in N_0} \mathbf{u}_{on} = 1 \end{array}$$

Step 0 For each k, select one or more extreme points of

Generate an LP with columns and variables corresponding to the sets of extreme points

Step 2 Compute the simplex multipliers of the orthogonality constraints and normality constraint.

Column-Generating ⇔⇔ Algorithm for SILP Step 3 For each k=0,1,...p, choose (γ_k, α_k) so as to maximize the relative profit:

$$\begin{array}{ll} \text{maximize} & \gamma = \sum\limits_{j=1}^m w_j \; \alpha_j \\ (\gamma, \alpha) \in \; S_k & \qquad \qquad \text{if } k \! > \! 0 \\ \end{array}$$

Column-Generating

Algorithm for SILP

Step 4

For each (γ_k, α_k) whose relative profit exceeds some tolerance, add the corresponding column to the LP tableau.

If no columns can be added, stop; else, return to Step 1

Column-Generating
Algorithm for SILP

Maximizing the Relative Profit

That is, if we compute the primal (approximate) solution $x_i = e^{w_i}$, $j=1, \dots m$

(i.e., exponentiate the simplex multipliers of the orthogonality conditions)

then

$$\rho_{n} = \frac{\mathbf{c}_{n} \prod_{j} \mathbf{x}_{j}^{a_{n,j}}}{\sum_{i \in [k]} \mathbf{c}_{i} \prod_{j} \mathbf{x}_{j}^{a_{i,j}}} = \frac{term \ n}{posynomial \ k} > 0$$

$$\forall \ n \in [k]$$

Multi-Item EOQ

EXAMPLE

Demand for three items is known, with the rate of demand constant over time, D_i/year. Holding cost of item #i is H_i /unit/year, and each replenishment incurs a cost of A_i.

Let Q_i = order quantity of item #i. D_i/Q_i = average # replenishments per year Q_i/Q_i = average inventory level $\langle \Box \Box \rangle$

Often there are additional constraints on the ordering policy, e.g.,

a limit on the number of replenishments/year

$$\sum_i \, \frac{D_i}{Q_i} \leq \, \overline{N}$$

 a limit on the maximum volume (if all orders were to arrive simultaneously)

$$\sum_i \, v_i Q_i \, \leq \, \, \overline{V}$$

• a limit on the average investment in inventory $\textstyle\sum_i \frac{1}{2} C_i Q_i \leq \overline{B}$

Maximizing the Relative Profit

For each k, the column having maximum relative profit is (γ_k, α_k) where

$$\gamma_k = G_k(\rho), \quad \alpha_k = A_{k,j}(\rho)$$
and
$$\rho_n = \frac{\mathbf{c}_n e^{\sum_{j} a_{nj} w_j}}{\sum_{i \in P_n} \mathbf{c}_i e^{\sum_{j} a_{ij} w_j}}$$

♦₽

For the ρ thus obtained, i.e.,

$$\rho_{n} = \frac{\mathbf{c}_{n} \prod_{j} x_{j}^{a_{n,j}}}{\sum_{i \in [k]} \mathbf{c}_{i} \prod_{j} x_{j}^{a_{i,j}}} \quad \forall \quad n \in [k]$$

the relative profit function is nonpositive if & only if

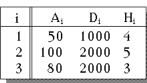
$$g_0(x) = g_0(x^*)$$

$$g_k(x) \le 1$$

$$\Leftrightarrow \Rightarrow$$

The classic EOQ ("economic order quantity") formula of Wilson specifies the order quantity which minimizes this annual cost:

$$Q_i^* = \sqrt{\frac{2A_iD_i}{H_i}}$$



EOQ

EXAMPLE

 $\begin{aligned} & \text{Minimize } \sum_{i=1}^{3} \left[\frac{A_i D_i}{Q_i} + \frac{1}{2} \; H_i \; Q_i \right] \\ & \text{subject to } \sum_{i=1}^{3} \; Q_i \leq \widehat{Q} \\ & \text{Multi-Item} \end{aligned}$

⟨⊅ ⊄⟩

Number of variables : 3 Number of posynomials: 2 Total number of terms: 9 Degrees of difficulty: 5 Terms per posynomial: 6 3

Coefficients and exponent matrix:

t	p	Ct	exponent
1 2 3 4 5 6 7 8	1 1 1 1 2 2 2	50000 2 200000 2.5 160000 1.5 0.01 0.01 0.01	-1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

 $\langle \neg \, c \rangle$

t = term number p = posynomial Ct = coefficient

Iteration 1

LP Solution

 $\begin{array}{c|cccc} \text{Col Posy Type} & \text{Value} \\ 1 & 0 & 0 & 8.27741236 \\ 14 & 2 & 0 & 1.00000000 \\ 6 & 1 & 0 & 0.42578125 \\ 2 & 1 & 0 & 0.20572917 \\ 4 & 1 & 0 & 0.36848958 \end{array}$

Determinant of the basis matrix = -1

 $\langle \neg \, c \rangle$

Iteration 2

LP Solution

Determinant of the basis matrix = 0.33517

 \Box

Iteration 3

LP Solution

Col Posy Type Value
1 0 0 9.27910603
14 2 0 0.03474715
12 2 0 0.92990237
15 1 1 0.97361308
17 1 1 0.02638692

Determinant of the basis matrix = 0.017434

Multi-Item EOQ

Posynomial	Tolerance
1	5.00E ⁻ 4
2	5.00E ⁻ 4

i.e., add a column for each posynomial constraint whose infeasibility exceeds 0.0005 and for the objective function if the duality gap exceeds 0.05%.

Frequencies for
Discarding unused grid pts: 10
Reporting solutions: 1
Types of grid points to be generated: 0 1

-----Exponentiating LP Dual solution-----

X = 12.71 50.839 40.671 Weights (ρ) : 0.32741 0.0021155 0.32741 0.010578 0.32741 0.0050773 0.12195 0.4878 0.39024

Objective functions: Primal: 12016 Dual: 3934 Duality Gap: 8081.5 = 205.43 percent

Constraints:

Value 1.0422 Infeasibility 0.042196 Lambda 1

Type-1 grid points (#15 16) added for posynomials 1 2 CPU time: 34.6 sec.

ʹϽເϽ

------Exponentiating LP Dual solution-----

X = 100 18.808 19.692 Weights (ρ): 0.025595 0.010238 0.54433 0.002407 0.41592 0.001512 0.72202 0.1358 0.14218

Objective functions: Primal: 19535 Dual: 10634 Duality Gap: 8901.7 = 83.713 percent

Constraints:

Value 1.385 Infeasibility 0.385 Lambda 0.96465

Type-1 grid points (#17 18) added for posynomials 1 2 CPU time: 56.6 sec.

 $\Diamond \Diamond$

-----Exponentiating LP Dual solution-----

X = 27.139 35.341 38.616 Weights (ρ): 0.15554 0.0045821 0.47775 0.0074588 0.34979 0.00489 0.26845 0.34958 0.38197

Objective functions: Primal: 11845 Dual: 10712 Duality Gap: 1133.6 = 10.583 percent

Constraints:

Value 1.011 Infeasibility 0.010958 Lambda 0.96465

Type-1 grid points (#19 20) added for posynomials 1 2

Iteration 4

-----Exponentiating LP Dual solution-----

X = 29.42 84.828 14.841 Weights (ρ): 0.11232 0.0038886 0.15581 0.014015 0.7125 0.0014712 0.22791 0.65713 0.11496 LP Solution Col Posy Type Value
1 0 0 9.28556137
16 2 1 0.83908931
12 2 0 0.12835868
6 1 0 0.03868089
19 1 1 0.96131911 Objective functions: Primal: 15132 Dual: 10781 Duality Gap: 4350.4 = 40.352 percent Constraints: Determinant of the basis matrix = 0.12686 Value 1.2909 Infeasibility 0.29089 Lambda 0.96745 Type-1 grid points (#21 22) added for posynomials 1 2 CPU time: $88.55\ \text{sec.}$ $\langle \neg \, c \rangle$ $\langle \neg \, \Box \rangle$ -----Exponentiating LP Dual solution-----Iteration 5 X = 24.384 55.342 26.841 Weights (ρ): 0.173 0.0041144 0.3049 0.011673 0.50292 0.0033967 0.22881 0.51932 0.25187 LP Solution ype Value 0 9.31039707 1 0.70887823 1 0.14488073 1 0.11237922 1 1.00000000 Col Posy Type 1 0 0 16 2 1 20 2 1 Objective functions: Primal: 11853 Dual: 11052 Duality Gap: 800.61 = 7.2438 percent Constraints: Value 1.0657 Infeasibility 0.06566 Lambda 0.96614 Determinant of the basis matrix = 0.039451 Type-1 grid points (#23 24) added for posynomials 1 2 CPU time: $105.75~{\rm sec.}$ ʹ⊅ເ⊅ ʹϽເϽ ------Exponentiating LP Dual solution-----Iteration 6 X = 19.492 46.668 35.622 Weights (ρ): 0.22206 0.0033749 0.371 0.0101 0.38884 0.0046257 0.19151 0.45851 0.34998 LP Solution Objective functions: Primal: 11551 Dual: 11234 Duality Gap: 316.93 = 2.8211 percent Constraints: Value 1.0178 Infeasibility 0.017825 Lambda 0.96474 eterminant of the basis matrix = 0.012445 Type-1 grid points (#25 26) added for posynomials 1 2 CPU time: 145.9 sec. $\langle \neg \, \Box \rangle$ $\langle \neg \, c \rangle$ ------Exponentiating LP Dual solution-----Iteration 7 X = 23.019 40.674 37.025 Weights (p): 0.18703 0.003964 0.42338 0.0087554 0.37209 0.0047819 0.22855 0.40384 0.36761 LP Solution Value 9.35296832 0.58266217 0.39776191 0.56701310 0.41733783 Col Posy Type Objective functions: Primal: 11614 Dual: 11533 Duality Gap: 80.955 = 0.70194 percent 25 14 26 19 0 1 0 1 1 Constraints: Value 1.0072 Infeasibility 0.0071768 Lambda 0.96478 Determinant of the basis matrix = 0.0045975 Type-1 grid points (#27 28) added for posynomials 1 2 CPU time: 170.9 sec. ʹ⊅ເ⊅ ʹϽເϽ

Iteration 8

LP Solution

Col Posy Type Value
1 0 0 9.35839921
25 1 0 0.22359388
14 2 0 0.44128975
26 2 1 0.5234395
27 1 1 0.77640612

Determinant of the basis matrix = 0.0024712

 $\Diamond \Diamond$

Iteration 9

LP Solution

Col Posy Type Value
1 0 0 9.36157370
25 1 1 0.01874770
30 2 1 0.67694682
26 2 1 0.28802800
27 1 1 0.98125230

Determinant of the basis matrix = 0.001611

 $\langle \Box \, \Box \rangle$

t p | 1 2 3 4 5 6

1 0 0 | 1 1 0000
3 0 1 | 1 10000
4 0 1 | 1 10000
5 0 1 | 1 10000
7 0 1 | 1 10000
8 0 2 | 1 10000
9 0 2 | 1 10000
10 0 2 | 1 10000
11 0 1 | 0.1667 0.1667 0.1667 0.1667 0.1667
12 0 2 | 0.3333 0.3333 0.3333
13 0 1 | 0.1046 0.1044 0.2335 0.2338 0.1617 0.1621
14 0 2 | 0.2057 0.3685 0.4258
15 1 1 | 0.3274 0.0021 0.3274 0.0106 0.3274 0.0051
16 1 2 | 0.1220 0.4878 0.3902
17 1 1 | 0.0256 0.0102 0.5443 0.0024 0.4159 0.0015
18 1 2 | 0.7220 0.1358 0.1422
19 1 1 | 0.1555 0.0046 0.4777 0.0075 0.3498 0.0049

LP Solution

 Col Posy Type
 Value

 1
 0
 0
 9.36298397

 31
 1
 1
 0.32721041

 30
 2
 1
 0.53472963

 32
 2
 1
 0.43029266

 27
 1
 1
 0.67278959

Determinant of the basis matrix = 0.0006505

 $\Diamond \Diamond$

-----Exponentiating LP Dual solution-----

X = 19.082 41.787 39.6 Weights (ρ): 0.22494 0.0032763 0.41087 0.0089682 0.34685 0.0050993 0.18993 0.41592 0.39415

Objective functions: Primal: 11649 Dual: 11596 Duality Gap: 52.955 = 0.45667 percent

Constraints:

Value 1.0047 Infeasibility 0.0047004 Lambda 0.96473

Type-1 grid points (#29 30) added for posynomials 1 2 CPU time: $195.5~{\rm sec}$.

 $\langle \neg \, c \rangle$

-----Exponentiating LP Dual solution-----

X = 20.616 42.925 36.647 Weights (ρ): 0.20811 0.003538 0.3998 0.0092083 0.37463 0.0047169 0.20577 0.42845 0.36579

Objective functions: Primal: 11654 Dual: 11633 Duality Gap: 21.345 = 0.18349 percent

Constraints:

Value 1.0019 Infeasibility 0.0018852 Lambda 0.96497

Type-1 grid points (#31 32) added for posynomials 1 2 CPU time: 221.2 sec.

ʹϽເϽ

20 1 2 | 0.2684 0.3496 0.3820 21 1 1 | 0.1123 0.0039 0.1558 0.0140 0.7125 0.0015 22 1 2 | 0.2279 0.6571 0.1150 23 1 1 | 0.1730 0.0041 0.3049 0.0117 0.5029 0.0034 24 1 2 | 0.2288 0.5193 0.2519 25 1 1 | 0.2221 0.0034 0.3710 0.0101 0.3888 0.0046 26 1 2 | 0.1915 0.4585 0.3500 27 1 1 | 0.1870 0.0040 0.4234 0.0088 0.3721 0.0048 28 1 2 | 0.2285 0.4038 0.3676 29 1 1 | 0.2249 0.0033 0.4109 0.0090 0.3468 0.0051 30 1 2 | 0.1899 0.4159 0.3942 31 1 1 | 0.2081 0.0035 0.3998 0.0092 0.3746 0.0047 32 1 2 | 0.2058 0.4284 0.3658

------Exponentiating LP Dual solution-----

X = 20.96 40.59 38.56 Weights (ρ): 0.2045 0.003895 0.4225 0.008701 0.3557 0.00496 0.2094 0.4054 0.3852

Objective functions: Primal: 11660 Dual: 11650 Duality Gap: 13.57 = 0.1165 percent

Constraints:

Value 1.001 Infeasibility 0.001169 Lambda 0.965

Type-1 grid points (#33 34) added for posynomials 1 2 CPU time: $^{-}448.9$ sec.

ʹϽເϽ

Weights (p): 0.1987 0.003697 0.4135 0.008884 0.3704 0.00476 0.2156 0.4144 0.3701

Objective functions: Primal: 11670 Dual: 11660 Duality Gap: 5.621 = 0.04821 percent

Constraints:

Value 1 Infeasibility 0.0004874 Lambda 0.9654

*** Terminated at iteration 12 *** Converged: Tolerances are satisfied CPU time: $^{-4}25.8$ sec. Frequency of use of each type grid point (ρ) : type 0 1 frequency 26 34 ♦

Primal Solution: Multi-Item EOQ

5/03/94 11:11 Solution reported is: optimal Objective function: 11670

> _X[i] 21.57 41.46 37.03

Constraints

ķ P Lambda 2 0.9654

Constraints Constraint # ___1__ lΥ Value: 1 0.9654

Objective function = 11670

Primal feasible solution

i= 1 2 3 X[i]= 21.56 41.44 37.01 (Sum of absolute differences between X & Xfeas is 0.04874)

 $\langle \neg \, \Box \rangle$

Dual Solution: Multi-Item EOQ

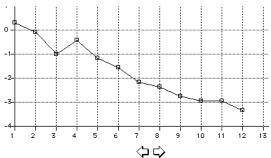
Weights of terms (ρ): k 1 2 3 4 5 1 1.9872E⁻¹ 3.6972E⁻³ 4.1352E⁻¹ 8.8838E⁻³ 3.7041E⁻¹ 2 2.1556E⁻¹ 4.1437E⁻¹ 3.7007E⁻¹

> ____6 4.7605E-3

Lagrange multipliers of primal constraints: 0.9654 Objective function:11660 Duality Gap: 11.11 = 0.09519 %

 $\langle \neg \, \Box \rangle$

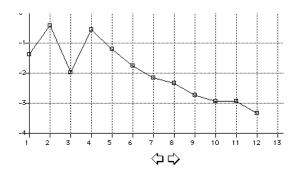
log Gap vs iteration



8	9	10	11	12	13	
⇔ו						

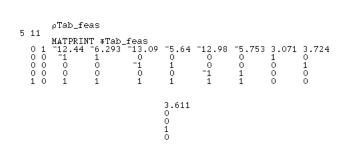
	0		RINT &TAI .82 -0.69 1 0 0 1		21 ⁻ 0.9163 0 1 0 1	-11.98 0 0 -1 1	-0.4055 0 0 1	4.605 1 0 0
4. 0 1 0	.605	4.609 0 0 1 0	5 -7.962 0 0 0 1		-8.012 -0.0001506 0.0002598 0.0003976		-0.316	8 0.4878
	-ò.	78 01536 5419 4144	3.822 0.722 0.1358 0.1422	-12.81 -0.151 -0.4703 -0.3449 1	0.2684 -0.3496 -0.3496	0.1084	3.744 - 0.2279 0.6571 0.115	12.74 -0.1689 -0.2932 -0.4995 1

log Infeasibility vs iteration



-12.78 -0.01536 -0.5419 -0.4144 1		-12.81 -0.151 -0.4703 -0.3449 1	0.2684 0.3496	-12.54 -0.1084 -0.1418 -0.711 1	0.2279	-12.74 -0.1689 -0.2932 -0.4995 1
3.58 0.2288 0.5193 0.2519	-12.76 -0.2187 -0.3609 -0.3842	0.1915 0.4585	-12.8 -0.1831 -0.4146 -0.3673	0.2285 0.4038	-12.77 -0.2217 -0.4019 -0.3417	
		-12.	78 3.5	49		

-0.2046 0.2058 -0.3906 0.4284 -0.3699 0.3658



		Curren	t Grid Po	ints		
# t p	1	2	3	4	5	6
2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 2	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
9 0 2 10 0 2 11 0 1 12 0 2 13 0 1 14 0 2	0.166667 0.333333 0.101935 0.205997	1.000000 0.166667 0.333333 0.101935 0.368498	1.000000 0.166667 0.333333 0.227933 0.425505		0.166667 0.182347	7

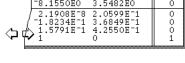
 $\langle \neg \, c \rangle$

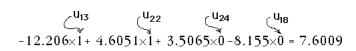
,	•		
4) H	(5) 11.4	(6) He	

(2) U ₁₁	(3) U ₁₂	(4) U ₁₃	(5) U ₁₄	(6) U ₁₅
-1.0819E1	-6.9314E-1	-1.2206E1	-9.1629E-1	-1.1982E1
-1	1	0	0	0
0	0	⁻ 1	1	⁻ 1
0	0	0	0	0
1	1	1	1	1

	(7) U ₁₆	(8)U ₂₁	(9)U ₂₂	(10)U ₂₃	(11) U ₁₇	(12)U ₂₄
	-4.0546E-1	4.6051	4.6051	4.6051	-7.9623	3.5065E0
	0	1	0	0	0	3.3333E-1
ı	, o	Q.	1	O.	-1.6666E-1	
ſ	1	o .	o o	1	1.6666E ⁻ 1	3.3333E ⁻ 1 ▮
L	1	U	U	U	1	0
8				f 4 - 7 1	\	••

	(13) u ₁₈	(14) u ₂₅	RHS
	-8.1550E0	3.5482E0	0
<> ¢	2.1908E-8 -1.8234E-1 1.5791E-1	2.0599E-1 3.6849E-1 4.2550E-1 0	0 0 0 1
2000			





$$\begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \times 1 + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times 1 + \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 0 \end{bmatrix} \times 0 + \begin{bmatrix} 2.2 \times 10^{-8} \\ -0.182 \\ 0.158 \\ 1 \end{bmatrix} \times 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Iteration 1

LP Solution

Col	Posy	Type	Value				
1	0	0	7.60090246	=	ln	1999.9999	(objective)
12	2	0	0.00000000				
4	1	0	1.000000000				
9	2	0	1.00000000				
13	1	0	0.00000000				

Determinant of the basis matrix = 0.05263893905

ʹϽເϽ

$$\pi = \begin{bmatrix} -12.206 \\ 4.6051 \\ 3.5065 \\ -8.155 \end{bmatrix}^T \begin{bmatrix} 0 & 0 & 1/3 & 2.2 \times 10^{-8} \\ -1 & 1 & 1/3 & -0.182 \\ 0 & 0 & 1/3 & 0.158 \\ 1 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

= [4.10616, 4.60517, 1.80834, -7.6009]

Added Grid Points:

15 1 1 0.171424 0.025276 0.416309 0.052039 0.333048 0.001905 16 1 2 0.363959 0.599471 0.036570

multipliers for orthogonality constraints

Exponentiating the Simplex Multipliers yields:

X = 60.71333761 100 6.100313127 < order quantities Weights (ρ):

0.17142 0.025275 0.4163 0.052038 0.33304 0.0019047 0.36395 0.59947 0.036569

Objective functions:

Primal: 4804.1 Duality Gap: 2804.1 Dual: 2000 = 140.2 percent

Constraints:

Value 1.6681 Infeasibility 0.6681 Lambda 1

Type-1 grid points (#15 16) added for posynomials 1 2

Iteration 2

LP Solution

Col	Posy	Type	Value
1	0	0	7.60090246
8	2	0	0.00000000
4	1	0	1.00000000
9	2	0	1.00000000
15	1	1	0.00000000

Determinant of the basis matrix = 0.001904713205

Iteration 3

LP	Solution

Col	Posy	Type	Value
1	0	0	8.51428654
18 17 9 15	2 1 2 1	1 1 0 1	0.13186813 1.00000000 0.67032967 0.00000000

Determinant of the basis matrix = 0.0009523566023

Iteration 4

LP	Solution

Col	Posy	Type	Value
1	0	0	8.77095649
20	2	1	0.39548023
18	2	1	0.50282486
19	1	1	1.00000000
15	1	1	0.00000000

Determinant of the basis matrix = 0.0005714139614

Iteration 5

Col	Posy	Type	Value
1	0	0	8.77095649
20	2	1	0.39548023
18	2	1	0.50282486
19	1	1	1.00000000
_ 21	1	1	0.00000000

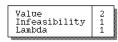
Determinant of the basis matrix = 1.863433243E-13

Exponentiating the Simplex Multipliers Yields:

X = 100 100 4.00277279E⁻183 Weights (ρ): 0.10989 0.043956 0.43956 0.054945 0.35164 1.31959E-186 0.5 0.5 2.00138E-185

Objective functions: Primal: 4550 Dual: 2000 Duality Gap: 2550 = 127.5 percent

Constraints:



Type-1 grid points (#17 18) added for posynomials 1 2

Exponentiating the Simplex Multipliers Yields:

X = 25 100 4.649352043E-21 Weights (ρ): 0.33898 0.0084745 0.33898 0.042372 0.27118 1.1820E-24 0.2 0.8 3.7194E⁻23 Objective functions: Primal: 5900 Dual: 4985.48 Duality Gap: 914.512 = 18.343percent

Constraints:

Value	1.25
Infeasibility	0.25
Lambda	0.80219

Type-1 grid points (#19 20) added for posynomials 1 2

Exponentiating the Simplex Multipliers Yields:

 $X = 36.26241276 68.94191008 2.834698229E^{-9}$

Weights (ρ):

0.20142 0.010594 0.42378 0.025177 0.33902 6.2114E-13 0.34468 0.65531 2.6944E-11 Objective functions:

Dual: 6444.3

Primal: 6845.50524

Duality Gap: 401.17 = 6.2251 percent

Constraints:

Value	1.05204
Infeasibility	0.05204
Lambda	0.89830

Type-1 grid points (#21 22) added for posynomials 1 2

Exponentiating the Simplex Multipliers Yields:

X = 36.26241276 68.94191008 0 Weights (p): $0.20142 \ 0.010594 \ 0.42378 \ 0.025177 \ 0.33902$ 0.34468 0.65531 0 Objective functions: Primal: 6845.5 Dual: 6444.33 Duality Gap: 401.17 = 6.2251percent

Constraints:

Value	1.0520
Infeasibility	0.0520
Lambda	0.8983

Type-1 grid points (#23 24) added for posynomials 1 2

