

Notes on Formulation of Optimization Problems

Mark S. Daskin

Dept. of IE/MS

Northwestern University

January, 2001

8/27/2003

Formulation Rules, M. S. Daskin

1

Outline

- Conventions
- Formulation Rules
- Typical Constraint Forms
- Core Models

8/27/2003

Formulation Rules, M. S. Daskin

2

Conventions I (generally) Use

■ INDICES

- ↗ letters like i, j, k, (middle of alphabet)
- ↗ used as subscripts
- ↗ index items in sets with corresponding upper case letter (e.g, I, J, K)

■ INPUTS

- ↗ lower case letters near beginning of alphabet

■ DECISION VARIABLES

- ↗ upper case letters near end of alphabet

8/27/2003

Formulation Rules, M. S. Daskin

3

Indices, Inputs and Dec. Var

■ INDICES

- ↗ used for enumerating items (e.g., demand nodes, candidate sites, scenarios, time periods)

■ INPUTS

- ↗ you **know** these before you start the problem or can readily compute them from other inputs
- ↗ demand values, distances, costs, probabilities, coverage distance, indicators of whether nodes are covered by others, number of sites to locate

8/27/2003

Formulation Rules, M. S. Daskin

4

Indices, Inputs, and Dec. Var.

■ DECISION VARIABLES

- ↗ these are what you want to know or what you must determine **within** the model along the way to determining what you really want to know
- ↗ locations of facilities, whether a node is covered, assignment of demand nodes to facilities, maximum distance

8/27/2003

Formulation Rules, M. S. Daskin

5

Objective function

■ OBJECTIVE FUNCTION

- ↗ this is what you want to minimize or maximize
- ↗ may be a single decision variable (e.g., W for maximum distance between a node and the facility serving it as in P-center)
- ↗ more often will be a function of decision variables (e.g., the total number of facilities as in set covering, the total demand weighted distance as in P-median)

8/27/2003

Formulation Rules, M. S. Daskin

6

Formulation rules

- Daskin's 10 (or 11) rules of formulation

8/27/2003

Formulation Rules, M. S. Daskin

7

Rule 1

- Clearly define all subscripts (at least in your own mind) and sets. For example:

- I: set of demand nodes indexed by i
- J: set of candidate sites indexed by j
- K: set of scenarios indexed by k
- T: set of time periods indexed by t

8/27/2003

Formulation Rules, M. S. Daskin

8

Rule 2

- Clearly separate the definitions of
 - indices and sets
 - inputs (or parameters)
 - decision variables

8/27/2003

Formulation Rules, M. S. Daskin

9

Rule 3

- In defining inputs or decision variables in words, if an index appears in the input or decision variable it should appear in the verbal definition as well

d_{ij} = distance between demand node i and candidate site j

This one (above) is fine

d_{ij} = distance

This one (above) is BAD

8/27/2003

Formulation Rules, M. S. Daskin

10

Rule 4

- Do not leave dangling subscripts in the objective function

$$\text{minimize } \sum_{i \in I} \sum_{j \in J} h_i d_{ij} Y_{ij} \text{ Fine}$$

$$\text{minimize } \sum_{i \in I} c_{ij} X_{ij} \text{ BAD; } j \text{ index is dangling}$$

8/27/2003

Formulation Rules, M. S. Daskin

11

Rule 5

- At least some decision variable must appear in the objective function and in each constraint

$$\text{minimize } \sum_{i \in I} \sum_{j \in J} h_i d_{ij} Y_{ij} \text{ Fine}$$

$$\text{subject to } d_{ij} \geq 0$$

BAD if d_{ij} is an input distance. No decision variable here

8/27/2003

Formulation Rules, M. S. Daskin

12

Rule 6

- Be sure all variables are linked in some way to each other (otherwise the problem is separable and you probably have an error)

8/27/2003

Formulation Rules, M. S. Daskin

13

Rule 6 example

$$\begin{array}{ll} \text{maximize} & \sum_{i \in I} h_i Z_i \\ \text{subject to} & \sum_{j \in J} X_j = P \\ & Z_i \in \{0,1\} & \forall i \in I \\ & X_j \in \{0,1\} & \forall j \in J \end{array}$$

X and Z variables are unlinked. You need an additional constraint. e.g.,

$$Z_i - \sum_j a_{ij} X_j \leq 0 \quad \forall i \in I$$

8/27/2003

Formulation Rules, M. S. Daskin

14

More on Rule 6

- Each variable does not have to be directly linked to each other variable

8/27/2003

Formulation Rules, M. S. Daskin

15

Rule 7

- If a variable or constant used in a constraint includes some index, then either
 - you should be summing over the index OR
 - you should specify the values of the index to which the constraint applies
 - DO NOT DO BOTH in the same constraint**

8/27/2003

Formulation Rules, M. S. Daskin

16

Rule 7 examples

$$\sum_{j \in J} Y_{ij} = 1 \quad \forall i \in I \quad \text{Ok}$$

$$\sum_{j \in J} h_{ik} d_{ijk} Y_{ijk} \leq D \quad \forall i \in I \quad \text{BAD; Need to specify what is going on with index } k$$

$$\sum_{j \in J} Y_{ij} = 1 \quad \forall j \in J \quad \text{BAD; Summing over } j \text{ and specifying constraint applies to all } j; \text{ Also, what is going on with index } i?$$

8/27/2003

Formulation Rules, M. S. Daskin

17

Rule 8

- Try to keep it linear (**IF POSSIBLE**)
 - avoid multiplying decision variables in the objective function or in constraints
 - avoid raising a decision variable to some power
 - avoid logs, trig functions,
 - be creative in transformations

8/27/2003

Formulation Rules, M. S. Daskin

18

Rule 9

■ Avoid big M type constraints (IF POSSIBLE)

- ↗ constraints with a big value of some constant multiplied by a binary variable
- ↗ often used to turn on or off a constraint depending on the value of the variable
- ↗ may be unavoidable (e.g., α -reliable minimax regret formulation)

8/27/2003

Formulation Rules, M. S. Daskin

19

Rule 10

■ Disaggregate constraints when possible

$$Y_{ij} \leq X_j \quad \forall i \in I, \forall j \in J \quad \text{Good, disaggregate constraint}$$

$$\sum_{i \in I} Y_{ij} \leq |I| X_j \quad \forall j \in J \quad \text{Not so good, aggregate constraint. Will lead to weaker LP relaxations}$$

8/27/2003

Formulation Rules, M. S. Daskin

20

Rule 11

■ Know which of rules 1-10 can be bent and when and how to do so

8/27/2003

Formulation Rules, M. S. Daskin

21

Typical Constraint Forms

■ TOTAL CONSTRAINT

$$\sum_{j \in J} X_j = p \quad \bullet \text{ the total of all the } X_j \text{ variables must be } p$$

- e.g., Pick p of the X_j variables and set them to 1, set all others to 0 (for X_j a binary variable)

8/27/2003

Formulation Rules, M. S. Daskin

22

Typical Constraint Forms

■ SELECTION or ASSIGNMENT CONSTRAINT

$$\sum_{j \in J} Y_{ij} = 1 \quad \forall i \in I$$

- For each row i (e.g., each demand node), the total of the Y_{ij} variables (for that i) must be 1
- each node i must be assigned to exactly one facility node

8/27/2003

Formulation Rules, M. S. Daskin

23

Typical Constraint Forms

■ SELECTION or ASSIGNMENT CONSTRAINT

$$\sum_{k \in K_j} X_{jk} \leq 1 \quad \forall j \in J$$

- pick at most one capacity for each site j (where K_j is a set of available capacities at candidate site j)

8/27/2003

Formulation Rules, M. S. Daskin

24

Typical Constraint Forms

SUPPLY Constraints

$$\sum_{j \in J} X_{ij} \leq S_i \quad \forall i \in I$$

where
 X_{ij} = flow from i to j

- The total flow out of node i must be less than or equal to the supply at node i (S_i)
- Note the definition of X_{ij} and that i is being used as a supply node and j is being used as a demand node**

8/27/2003

Formulation Rules, M. S. Daskin

25

Typical Constraint Forms

DEMAND Constraints

$$\sum_{i \in I} X_{ij} \geq D_j \quad \forall j \in J$$

where
 X_{ij} = flow from i to j

- The total flow into node j must be greater than or equal to the demand at node j (D_j)
- Note the definition of X_{ij} and that i is being used as a supply node and j is being used as a demand node**

8/27/2003

Formulation Rules, M. S. Daskin

26

Typical Constraint Forms

DEMAND-LIKE Constraints

$$\sum_{k \in K} q_k Z_k \geq \alpha$$

- Total probability of selected scenarios must be at least α where K is a set of scenarios
- Used in α -reliable minimax regret model

8/27/2003

Formulation Rules, M. S. Daskin

27

Typical Constraint Forms

LINKAGE or FORCING CONSTRAINTS

$$Y_{ij} \leq X_j$$

- X_j must be at least as large as Y_{ij} OR
- Y_{ij} must be no bigger than X_j for each pair of i and j
- You cannot assign demands at i to a facility at j ($Y_{ij}=1$) unless you locate at j ($X_j=1$)

8/27/2003

Formulation Rules, M. S. Daskin

28

Typical Constraint Forms

LINKAGE or FORCING CONSTRAINTS

$$Z_i - \sum_{j \in J} a_{ij} X_j \leq 0 \quad \forall i \in I$$

- Node i cannot be counted as being covered ($Z_i=1$) unless there is at least one facility that is located that is capable of covering node i ($\sum_{j \in J} a_{ij} X_j \geq 1$)

8/27/2003

Formulation Rules, M. S. Daskin

29

Typical Constraint Forms

LARGEST OF Constraints

$$W \geq \sum_{j \in J} d_{ij} Y_{ij}$$

- W must be larger than the largest value of $\sum_{j \in J} d_{ij} Y_{ij}$
- Typically $\sum_{j \in J} d_{ij} Y_{ij}$ would represent the distance between node i and the facility to which it is assigned
- Used in P-center problems in which we minimize W subject to this and other constraints

8/27/2003

Formulation Rules, M. S. Daskin

30

Typical Constraint Forms

■ CONSTRAINTS THAT SWITCH ON and OFF

$$R \geq V_k - \hat{V}_k - M(1 - Z_k) \quad \forall k \in K$$

where

M = a very large number
so

if $Z_k = 1$ then $R \geq V_k - \hat{V}_k$
but if $Z_k = 0$ then $R \geq V_k - \hat{V}_k - M$
and constraint is "inactive"

8/27/2003

Formulation Rules, M. S. Daskin

31

Typical Constraint Forms

■ CONSTRAINTS THAT SWITCH ON and OFF

- If $Z_k=1$ then constraint is active, otherwise it is "inactive"
- Used in α -reliable minimax regret model
- Note that in this case, the remainder of the constraint (without the term in M) is a LARGEST OF constraint
- Try to avoid big-M constraints (see rule 9)

8/27/2003

Formulation Rules, M. S. Daskin

32

Typical Constraint Forms

■ DISTANCE Definition

$$\text{minimize} \quad \sum_{i \in I} \sum_{j \in J} h_{ij} (x_{ij}^+ + x_{ij}^-)$$

$$\text{subject to} \quad x_j - x_i = x_{ij}^+ - x_{ij}^- \quad \forall i \in I, \forall j \in J$$

$$x_{ij}^+, x_{ij}^- \geq 0 \quad \forall i \in I, \forall j \in J$$

where

x_j, x_i = x coordinates of points j and i

x_{ij}^+, x_{ij}^- = positive and negative components of the distance between i and j

8/27/2003

Formulation Rules, M. S. Daskin

33

Typical Constraint Forms

■ DISTANCE Definition

- Note definitions of decision variables (different from normal)
- Used in some layout formulations
- Note interaction between objective function and constraints is critical
- example:

$$x_j = 3; x_i = 7$$

$$x_{ij}^+ = 0; x_{ij}^- = 4$$

8/27/2003

Formulation Rules, M. S. Daskin

34

Set Covering Model

$$\text{minimize} \quad \sum_{j \in J} X_j$$

NUMBER SELECTED

subject to

$$\sum_{j \in J} a_{ij} X_j \geq 1 \quad \forall i \in I$$

DEMAND - LIKE constraint

$X_j \in \{0,1\}$

$\forall j \in J$

INTEGRALITY

8/27/2003

Formulation Rules, M. S. Daskin

35

Maximal Covering Model

$$\text{maximize} \quad \sum_{i \in I} h_i Y_i$$

Number Covered

subject to

$$\sum_{j \in J} a_{ij} X_j \geq Y_i \quad \forall i \in I$$

Coverage Constraint (linkage)

$\sum_{j \in J} X_j = p$

Number to Locate

$X_j \in \{0,1\}$

$\forall j \in J$

$Y_i \in \{0,1\}$

$\forall i \in I$

Integrality

8/27/2003

Formulation Rules, M. S. Daskin

36

P-median Model

$$\begin{aligned}
 \text{minimize} \quad & \sum_{i \in I} \sum_{j \in J} h_i d_{ij} Y_{ij} && \text{Demand Wtd Total Dist} \\
 \text{subject to} \quad & \sum_{j \in J} Y_{ij} = 1 \quad \forall i \in I && \text{ASSIGNMENT} \\
 & \sum_{j \in J} X_j = p && \text{constraint} \\
 & Y_{ij} - X_j \leq 0 \quad \forall i \in I, \forall j \in J && \text{LINKAGE} \\
 & X_j \in \{0,1\} \quad \forall j \in J && \text{constraint} \\
 & Y_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J && \text{INTEGRALITY}
 \end{aligned}$$

8/27/2003

Formulation Rules, M. S. Daskin

37

Fixed Charge Loc. Model

$$\begin{aligned}
 \text{minimize} \quad & \sum_{j \in J} f_j X_j + \beta \sum_{i \in I} \sum_{j \in J} h_i d_{ij} Y_{ij} && \text{Fixed +} \\
 & \sum_{j \in J} Y_{ij} = 1 \quad \forall i \in I && \text{Transport Cost} \\
 \text{subject to} \quad & \sum_{j \in J} X_j = p && \text{ASSIGNMENT} \\
 & Y_{ij} - X_j \leq 0 \quad \forall i \in I, \forall j \in J && \text{constraint} \\
 & X_j \in \{0,1\} \quad \forall j \in J && \text{LINKAGE} \\
 & Y_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J && \text{constraint} \\
 & Y_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J && \text{INTEGRALITY}
 \end{aligned}$$

8/27/2003

Formulation Rules, M. S. Daskin

38

P-center Model

$$\begin{aligned}
 \text{minimize} \quad & W && \text{Maximum Distance} \\
 \text{subject to} \quad & \sum_{j \in J} Y_{ij} = 1 \quad \forall i \in I && \text{ASSIGNMENT constraint} \\
 & \sum_{j \in J} X_j = p && \text{TOTAL constraint} \\
 & Y_{ij} - X_j \leq 0 \quad \forall i \in I, \forall j \in J && \text{LINKAGE} \\
 & W \geq \sum_{j \in J} d_{ij} Y_{ij} \quad \forall i \in I && \text{constraint} \\
 & X_j \in \{0,1\} \quad \forall j \in J && \text{MAXIMUM} \\
 & Y_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J && \text{constraint} \\
 & Y_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J && \text{INTEGRALITY}
 \end{aligned}$$

8/27/2003

Formulation Rules, M. S. Daskin

39