

2-Machine Flow Shop

We wish to sequence n jobs, each requiring processing on machine #1, followed by machine #2.

p_{ij} = processing time for job i on machine # j

makespan = total amount of time required to complete processing of all n jobs

Objective: Sequence the jobs so as to minimize the makespan

EXAMPLE

JOB	Processing time (hrs)	
	Machine #1	Machine #2
1	2	6
2	7	3
3	9	7
4	11	5
5	7	10
6	4	8

sequence {1,2,3,4,5,6}

Job	Machine 1	Machine 2
1	<u>s</u> 0 <u>f</u> 2	<u>s</u> 2 <u>f</u> 8
2	2 9	9 12
3	9 18	18 25
4	18 29	29 34
5	29 36	36 46
6	36 40	46 54

s = start time, f = finish time
Makespan = 54

Suppose we schedule the jobs for the sequence {1,2,3,4,5,6}

Can we reduce the makespan by changing the sequence of the jobs?

Johnson's Algorithm

-an optimizing algorithm for scheduling the 2-machine flow shop, assuming that **no passing** is allowed (i.e., jobs are processed in the same sequence on both machines)

-constructs a sequence by "growing" it from both ends (front and back)

etc.

step 0 Initialize $S_0 = S_1 = \emptyset$ and $I = \{1, 2, 3, \dots, n\}$

step 1 Find $\min_{i \in I, j \in \{1, 2\}} \{p_{ij}\} = p_{ij}^*$

step 2 If $j^* = 1$, then $S_0 = S_0, \hat{i}$ (i.e., append job \hat{i} to the beginning of the sequence)
Otherwise (i.e., $j^* = 2$), $S_1 = \hat{i}, S_1$ (i.e., append job \hat{i} to the end of the sequence)

Step 3 Remove \hat{i} from I . If $I \neq \emptyset$ then go to step 1.
Else the optimal sequence is $S = S_0, S_1$

EXAMPLE

JOB	Processing time	
	Machine 1	Machine 2
1	(2)	6
2	7	3
3	9	7
4	11	5
5	7	10
6	4	8

Minimum p_{ij} is p_{22}

Therefore,
 $S_0 = \{1\}$, $S_1 = \{2\}$
 $I = \{3,4,5,6\}$

JOB	Processing time	
	Machine 1	Machine 2
2	7	3
3	9	7
4	11	5
5	7	10
6	4	8

Minimum p_{ij} is p_{61}

Therefore,
 $S_0 = \{1,6\}$
 $S_1 = \{2\}$
and

$I = \{3,4,5\}$

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
4	11	5
5	7	10
6	4	8

Minimum p_{ij} is p_{42}

Therefore,
 $S_0 = \{1,6\}$
 $S_1 = \{4,2\}$
and

$I = \{3,5\}$

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
4	11	5
5	7	10

Minimum p_{ij} is $p_{51} = p_{32}$

Therefore,
 $S_0 = \{1,6,5\}$
 $S_1 = \{3,4,2\}$

and $I = \emptyset$

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
5	7	10

The optimal sequence is
 $S = S_0 \cup S_1$

Optimal Sequence = {1,6,5,3,4,2}

Job	Machine 1	Machine 2
	s f	s f
1	—	—
1	0 2	2 8
6	2 6	8 16
5	6 13	16 26
3	13 22	26 33
4	22 33	33 38
2	33 40	40 43

s = start time, f = finish time
Makespan = 43

3-Machine Flow Shop

Special conditions under which Johnson's Algorithm can be used to minimize the makespan:

- All jobs are to be processed on Machines #1, 2, & 3 in that order
- The processing time on Machine #2 is dominated either by the time on Machine #1 or Machine #3.

either $\min \{p_{i1}\} \geq \max \{p_{i2}\}$
or $\min \{p_{i3}\} \geq \max \{p_{i2}\}$

JOB	Processing Times (hrs)		
	Machine A	Machine B	Machine C
1	10	6	7
2	8	2	6
3	5	2	10
4	6	6	7
5	8	5	8

Processing times on machine 2 are dominated by those on machine 3

EXAMPLE

$5 = \min \{p_{11}\} < \max \{p_{12}\} = 6$
 $6 = \min \{p_{13}\} \geq \max \{p_{12}\} = 6$

**Application of
Johnson's Algorithm
to 3-Machine Problem**

Define two "dummy" machines, 1' and 2', with processing times

$$p_{i1'} = p_{i1} + p_{i2}$$

$$p_{i2'} = p_{i2} + p_{i3}$$

Apply Johnson's Algorithm to the two-machine problem with these two dummy machines. The resulting sequence is optimal for the 3-machine problem.

Original Data:

JOB	MACHINE		
	A	B	C
1	10	6	7
2	8	2	6
3	5	2	10
4	6	6	7
5	8	5	8

"Dummy" Machine Data:

JOB	MACHINE	
	1'	2'
1	16	13
2	10	8
3	7	12
4	12	13
5	13	13

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined:

Processing Times

i	1	2
1	16	13
2	10	8
3	7	12
4	12	13
5	13	13

The sequence found by this algorithm is: 3 4 5 1 2

The sequence is guaranteed to be optimal!

Optimal Schedule:

Job	Machine 1		Machine 2		Machine 3	
i	s	f	s	f	s	f
3	0	5	5	7	7	17
4	5	11	11	17	17	24
5	11	19	19	24	24	32
1	19	29	29	35	35	42
2	29	37	37	39	42	48

s = start time, f = finish time
Makespan = 48

Optimal Sequence:

Makespan = 48, Sequence: 3 4 5 1 2

Compare with an arbitrary sequence:

Makespan = 54, Sequence: 1 2 3 4 5

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

5 Jobs, 3 Machines

Processing Times			
i	1	2	3
1	6	1	6
2	16	7	16
3	13	7	12
4	6	19	13
5	16	12	17

Times on
machine 2 are
NOT dominated
by either
machine 1 or 3!

Two "dummy machines" are defined:

Processing Times

i	1	2
1	7	7
2	23	23
3	20	19
4	25	32
5	28	29

The sequence found by this algorithm is: 1 2 4 5 3

*Not guaranteed to be
optimal!*

Schedule found by Johnson's Algorithm:

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1		Machine 2		Machine 3	
i	s	f	s	f	s	f
1	0	6	6	7	7	13
2	6	22	22	29	29	45
4	22	28	29	48	48	61
5	28	44	48	60	61	78
3	44	57	60	67	78	90

s = start time, f = finish time

Makespan = 90

**Branch-and-Bound
Algorithm for
3-Machine
Flowshop Problem**

suggested by Ignall & Schrage
Suppose that the first r jobs
in the sequence have been
tentatively fixed:
 $J_r = \{j_1, j_2, \dots, j_r\}$

Denote by \bar{J}_r the set of $(n-r)$ jobs not yet
sequenced.

Let $\text{TIME}_1(J_r)$, $\text{TIME}_2(J_r)$, and $\text{TIME}_3(J_r)$ be the
times at which machines 1, 2, & 3 (respectively)
complete processing the jobs in J_r .

Example

Suppose
 $J_1 = \{1\}$

JOB	Machine Processing Time		
i	1	2	3
1	14	12	13
2	8	5	3
3	1	20	2
4	6	1	1

$J_1 = \{1\}$

$\text{TIME}_2(J_1) = 26$

$$\text{TIME}_2(J_r) + \sum_{i \in \bar{J}_r} p_{i2} + \min_{i \in \bar{J}_r} \{p_{i2} + p_{i3}\}$$

Lower Bounds on makespan of all completions of the
partial sequence J_r :

$$\text{TIME}_1(J_r) + \sum_{i \in \bar{J}_r} p_{i1} + \min_{i \in \bar{J}_r} \{p_{i2} + p_{i3}\}$$

Makespan if the
job with shortest
processing times
on machines 2&3
need not wait

$$\text{TIME}_2(J_r) + \sum_{i \in \bar{J}_r} p_{i2} + \min_{i \in \bar{J}_r} \{p_{i3}\}$$

Makespan if the job
with least time on
machine #3 need not
wait

$$\text{TIME}_3(J_r) + \sum_{i \in \bar{J}_r} p_{i3}$$

Makespan if no job needs to
wait for machine #3

$J_1 = \{1\}$

$\text{TIME}_3(J_1) = 39$

$$\text{TIME}_3(J_r) + \sum_{i \in \bar{J}_r} p_{i3}$$

JOB	Machine Processing Time		
i	1	2	3
1	14	12	13
2	8	5	3
3	1	20	2
4	6	1	1

$J_1 = \{1\}$

$\text{TIME}_1(J_1) = 14$

$$\text{TIME}_1(J_r) + \sum_{i \in \bar{J}_r} p_{i1} + \min_{i \in \bar{J}_r} \{p_{i2} + p_{i3}\}$$

Optimal Schedule

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1		Machine 2		Machine 3	
	s	f	s	f	s	f
1	0	6	6	7	7	13
2	6	12	12	31	31	44
3	12	28	31	38	44	60
4	28	41	41	48	60	72
5	41	57	57	69	72	89

s = start time, f = finish time
Makespan = 89

**Branch-and-Bound
5-job, 3-machine
Sequencing Problem**

```

Subproblem number 3: J= 1 2 3
Completion times: 35 42 57
Lower bounds: 86 86 87

Subproblem number 4: J= 1 2 3 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---

Subproblem number 5: J= 1 2 3 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---

--- Subproblem 3: Fathomed by enumeration ---

Subproblem number 6: J= 1 2 4
Completion times: 28 48 61
Lower bounds: 76 79 90
--- Fathomed by bound ---

```


Optimal Schedule:

Makespan = 89, Sequence: 1 4 2 3 5


```

Subproblem number 7: J= 1 2 5
Completion times: 38 50 67
Lower bounds: 76 88 92
--- Fathomed by bound ---
--- Subproblem 2: Fathomed by enumeration ---
Subproblem number 8: J= 1 3
Completion times: 19 26 38
Lower bounds: 80 77 84
Subproblem number 9: J= 1 3 2
Completion times: 35 42 58
Lower bounds: 86 86 88
Subproblem number 10: J= 1 3 2 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---
Subproblem number 11: J= 1 3 2 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 9: Fathomed by enumeration ---

```



```

Subproblem number 12: J= 1 3 4
Completion times: 25 45 58
Lower bounds: 80 80 91
--- Fathomed by bound ---
Subproblem number 13: J= 1 3 5
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound ---
--- Subproblem 8: Fathomed by enumeration ---
Subproblem number 14: J= 1 4
Completion times: 12 31 44
Lower bounds: 76 69 89
Subproblem number 15: J= 1 4 2
Completion times: 28 38 60
Lower bounds: 76 69 89
Subproblem number 16: J= 1 4 2 3
Completion times: 41 48 72
Lower bounds: 86 77 89

```

NEW INCUBENT! --- Subproblem 16: Fathomed by enumeration

```

Subproblem number 17: J= 1 4 2 3 5
Completion times: 57 69 89
*** New incumbent: 89 ***
--- Subproblem 15: Fathomed by enumeration ---
Subproblem number 18: J= 1 4 2 5
Completion times: 44 56 77
Lower bounds: 76 75 89
--- Fathomed by bound ---
--- Subproblem 15: Fathomed by enumeration ---
Subproblem number 19: J= 1 4 3
Completion times: 25 38 56
Lower bounds: 80 73 89
--- Fathomed by bound ---
Subproblem number 20: J= 1 4 5
Completion times: 28 43 61
Lower bounds: 76 69 89
--- Fathomed by bound ---
--- Subproblem 14: Fathomed by enumeration ---

```

```

Subproblem number 21: J= 1 5
Completion times: 22 34 51
Lower bounds: 76 79 92
--- Fathomed by bound ---
--- Subproblem 1: Fathomed by enumeration ---

```

```

Subproblem number 26: J= 2 1 3 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 24: Fathomed by enumeration ---

```

```

Subproblem number 22: J= 2
Completion times: 16 23 39
Lower bounds: 64 68 87

```

```

Subproblem number 27: J= 2 1 4
Completion times: 28 47 60
Lower bounds: 76 78 89
--- Fathomed by bound ---

```

```

Subproblem number 23: J= 2 1
Completion times: 22 24 45
Lower bounds: 76 74 87

```

```

Subproblem number 28: J= 2 1 5
Completion times: 38 50 67
Lower bounds: 76 88 92
--- Fathomed by bound ---

```

```

Subproblem number 24: J= 2 1 3
Completion times: 35 42 57
Lower bounds: 86 86 87

```

```

--- Subproblem 23: Fathomed by enumeration ---

```

```

Subproblem number 25: J= 2 1 3 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---

```

```

Subproblem number 29: J= 2 3
Completion times: 29 36 51
Lower bounds: 64 74 87

```

```

Subproblem number 30: J= 2 3 1
Completion times: 35 37 57
Lower bounds: 86 81 87

```

```

Subproblem number 35: J= 2 4
Completion times: 22 42 55
Lower bounds: 64 68 90
--- Fathomed by bound ---

```

```

Subproblem number 31: J= 2 3 1 4
Completion times: 41 60 73
Lower bounds: 86 89 90
--- Fathomed by bound ---

```

```

Subproblem number 36: J= 2 5
Completion times: 32 44 61
Lower bounds: 64 77 92
--- Fathomed by bound ---

```

```

Subproblem number 32: J= 2 3 1 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---

```

```

--- Subproblem 22: Fathomed by enumeration ---

```

```

--- Subproblem 30: Fathomed by enumeration ---

```

```

Subproblem number 37: J= 3
Completion times: 13 20 32
Lower bounds: 64 65 84

```

```

Subproblem number 33: J= 2 3 4
Completion times: 35 55 68
Lower bounds: 64 74 91
--- Fathomed by bound ---

```

```

Subproblem number 38: J= 3 1
Completion times: 19 21 38
Lower bounds: 80 72 84

```

```

Subproblem number 34: J= 2 3 5
Completion times: 45 57 74
Lower bounds: 64 83 93
--- Fathomed by bound ---

```

```

Subproblem number 39: J= 3 1 2
Completion times: 35 42 58
Lower bounds: 86 86 88

```

```

--- Subproblem 29: Fathomed by enumeration ---

```

Subproblem number 40: $J = 3 \ 1 \ 2 \ 4$
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---
Subproblem number 41: $J = 3 \ 1 \ 2 \ 5$
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 39: Fathomed by enumeration ---
Subproblem number 42: $J = 3 \ 1 \ 4$
Completion times: 25 44 57
Lower bounds: 80 79 90
--- Fathomed by bound ---
Subproblem number 43: $J = 3 \ 1 \ 5$
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound ---
--- Subproblem 38: Fathomed by enumeration ---

Subproblem number 44: $J = 3 \ 2$
Completion times: 29 36 52
Lower bounds: 64 74 88
Subproblem number 45: $J = 3 \ 2 \ 1 \ 1$
Completion times: 35 37 58
Lower bounds: 86 81 88
Subproblem number 46: $J = 3 \ 2 \ 1 \ 4$
Completion times: 41 60 73
Lower bounds: 86 89 90
--- Fathomed by bound ---
Subproblem number 47: $J = 3 \ 2 \ 1 \ 5$
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 45: Fathomed by enumeration ---
Subproblem number 48: $J = 3 \ 2 \ 4$
Completion times: 35 55 68
Lower bounds: 64 74 91
--- Fathomed by bound ---

Subproblem number 49: $J = 3 \ 2 \ 5$
Completion times: 45 57 74
Lower bounds: 64 83 93
--- Fathomed by bound ---
--- Subproblem 44: Fathomed by enumeration ---
Subproblem number 50: $J = 3 \ 4$
Completion times: 19 39 52
Lower bounds: 64 65 91
--- Fathomed by bound ---
Subproblem number 51: $J = 3 \ 5$
Completion times: 29 41 58
Lower bounds: 64 74 93
--- Fathomed by bound ---
--- Subproblem 37: Fathomed by enumeration ---
Subproblem number 52: $J = 4$
Completion times: 6 25 38
Lower bounds: 64 58 89
--- Fathomed by bound ---

Subproblem number 53: $J = 5$
Completion times: 16 28 45
Lower bounds: 64 68 92
--- Fathomed by bound ---
--- Subproblem 0: Fathomed by enumeration ---
Optimal sequence is 1 4 2 3 5
subproblems enumerated = 53