

EXAMPLE

·····						
		Processing t	ime (hrs)			
	JOB	Machine #1	Machine #2			
	1	2	6			
	2	7	3			
	3	9	7			
	4	11	5			
	5	7	10			
	6	4	8			

sequence {1,2,3,4,5,6}

Job	Machine 1	Machine 2
1	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>
1 2 3 4 5 6	0 2 2 9 9 18 18 29 29 36 36 40	$\begin{array}{cccc} 2 & 8 \\ 9 & 12 \\ 18 & 25 \\ 29 & 34 \\ 36 & 46 \\ 46 & 54 \end{array}$

s = start time, f = finish time Makespan = 54

step 0	Initialize $S_0=S_1=\emptyset$ and $I=\{1,2,3,n\}$
step 1	Find $\min_{i \in I, j \in \{1, 2\}} \{p_{ij}\} = p_{\hat{j}\hat{j}}$
step 2	If $\hat{j} = 1$, then $S_0 = S_0$, \hat{i} (i.e., append job \hat{i} to the beginning of the sequence) Otherwise (i.e., $\hat{j} = 2$), $S_1 = \hat{i}$, S_1 (i.e., append job \hat{i} to the end of the sequence)
Step 3	Remove \hat{i} from I. If $I \neq \emptyset$ then go to step 1. Else the optimal sequence is $S = S_0, S_1$ \Rightarrow Example

We wish to sequence n jobs, each requiring processing on machine #1, followed by machine #2.

p_{ii} = processing time for job i on machine #j

makespan = total amount of time required to complete processing of all *n* jobs

Objective: Sequence the jobs so as to minimize the makespan

Can we reduce the makespan by changing the sequence of the jobs?

-an optimizing algorithm for scheduling the 2-machine flow shop, assuming that *no passing* is allowed (i.e., jobs are processed in the same sequence on both machines)

-construsts a sequence by "growing" it from both

ends (front and back)

	:	е	eti	с.

EXAMPLE	JOB	Processing Machine 1	g time Machine 2
S ₀ =S ₁ = Ø and	1	\bigcirc_7	6
I={1,2,3,4,5,6}	2		3
Minimum p _{ij}	3	9	7
is p ₁₁	4	11	5
Therefore,	5	7	10
S ₀ ={1}, S ₁ = Ø I={2,3,4,5,6}	6	4	

Flowshop

Optimal Sequence = {1,6,5,3,4,2}

Job	Machine 1	Machine 2
i	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>
1 6 5 3 4 2	0 2 2 6 13 13 22 22 33 33 40	2 8 8 16 16 26 26 33 33 38 40 43

s = start time, f = finish time Makespan = 43

3-Machine Flow Shop Special conditions under which Johnson's Algorithm can be used to minimize the makespan:

- All jobs are to processed on Machines #1,2, &3 in that order
- The processing time on Machine #2 is dominated either by the time on Machine #1 or Machine #3.

Optimal Sequence = {1,6,5,3,4,2}

	100	Proces	ssing Time	s(hrs)
	JOB	Machine A	Machine B	Machine C
	1	10	6	7
	2	8	2	6
	3	5	2	10
	4	6	6	7
	5	8	5	8
Processing times on machine 2 are dominated by those on machine 3				
EXAMPLE		5 = M	in {p _{i1} } < n	nax {p _{i2} } = 6 nax {p _{i2} } = 6

7/15/98

Application of Johnson's Algorithm to 3-Machine Problem Define two "dummy" machines, 1' and 2', with processing times

 $p_{i1'} = p_{i1} + p_{i2}$ $p_{i2'} = p_{i2} + p_{i3}$

Apply Johnson's Algorithm to the two-machine problem with these two dummy machines. The resulting sequence is optimal for the 3-machine problem.

Johnson's	Algorithm

Three-Machine Problem

The sequence found by this algorithm is: 3 4 5 1 2 The sequence is guaranteed to be optimal!

Optimal Sequence:

ç

2

з

Makespan = 48, Sequence: 3 4 5 1 2

15

20

888886

Original Data:

MACHINE JOB В A С 10 6 7 1 2 3 8 2 6 5 2 10 4 5 6 б 7 5 8 8

	MACHINE		
JOB	1'	2'	
1	16	13	
2 3	10	8	
3	7	12	
4	12	13	
5	13	13	

Optimal Schedule:

Job	Machine 1	Machine 2	Machine 3
i 345 12	s f 5 119 119 29 37	<u>s</u> <u>11</u> <u>174</u> <u>199</u> <u>37</u> <u>39</u>	$\begin{array}{c c} \underline{s} & \underline{f} \\ 7 & 17 \\ 17 & 24 \\ 24 & 32 \\ 35 & 42 \\ 42 & 48 \end{array}$

s = start time, f = finish time Makespan = 48

Compare with an arbitrary sequence:

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined: Processing Times

i	1	2	
1	7	7	
2	23	23	
3	20	19	
4	25	32	
5	28	29	

The sequence found by this algorithm is: 1 2 4 5 3 Not guaranteed to be optimal!

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

5 Jobs, 3 Machines

Times on machine 2 are NOT dominated by either machine 1 or 3!

45

40

Flowshop

Schedule found by Johnson's Algorithm:

Branch-and-Bound Algorithm for 3-Machine Flowshop Problem -suggested by Ignall & Schrage Suppose that the first r jobs in the sequence have been tentatively fixed: $J_r = \{ j_1, j_2, \cdots j_r \}$

Denote by $\overline{J_r}$ the set of (n-r) jobs not yet sequenced.

Let TIME1(J_r), TIME2(J_r), and TIME3(J_r) be the times at which machines 1, 2, & 3 (respectively) complete processing the jobs in $\ J_r$.

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1 Machine		Machine 3
i	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>
1	0 6	6 7	7 13
2	22	22 29	29 45
4	22 28	29 48	48 61
5	28 44	48 60	61 78
3	44 57	60 67	78 90

Lower Bounds on makespan of all completions of the partial sequence J_r :

$$\text{TIME1}(J_r) + \sum_{i \in \overline{J}_r} p_{i1} + \min_{i \in \overline{J}_r} \{ p_{i2} + p_{i3} \}$$

Makespan if the job with shortest processing times on machines 2&3 need not wait

Makespan if the job

with least time on

machine #3 need not

$$TIME2(J_r) + \sum_{i \in \overline{J}_r} p_{i2} + \min_{i \in \overline{J}_r} \{p_{i3}\}$$

$$TIME3(J_r) + \sum_{i \in \overline{J}_r} p_{i3}$$

Makespan if no job needs to 3 wait for machine #3

wait

 $TIME3(J_r) + \sum_{i \in \overline{J}_r} p_{i3}$

 $J_1 = \{1\}$

 $TIME3(J_1) = 39$

1

2	0		
	O	5	3]
3	1	20	2 } 6
4	6	1	1)

2	1		ئے	i	Lower Bound #3:
3			1		39 + 6 = 45
	14	26	39	45	

Optimal Schedule Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1	Machine 2	Machine 3
i 1 4 2 3 5	$ \begin{array}{c c} \underline{s} & \underline{f} \\ 0 & 6 \\ 12 & 12 \\ 12 & 28 \\ 28 & 41 \\ 41 & 57 \end{array} $	<u>s</u> <u>f</u> 671231 313148 4148 5769	<u>s</u> <u>f</u> 7 13 31 44 44 60 60 72 72 89

s = start time, f = finish time Makespan = 89

(44.2%)

Optimal Schedule:

Makespan = 89, Sequence: 1 4 2 3 5

Branch-and-Bound 5-job, 3-machine Sequencing Problem

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Using Johnson's algorithm, job sequence is: 1 2 4 5 3 Makespan is 90, our original incumbent. We now begin the branch-&-bound algorithm

Subproblem number 0: J=

Subproblem number 1: J= 1 Completion times: 6 7 13 Lower bounds: 76 64 71

Subproblem number 2: J= 1 2 Completion times: 22 29 45 Lower bounds: 76 79 87

Subproblem number 3: J= 1 2 3 Completion times: 35 42 57 Lower bounds: 86 86 87 Subproblem number 4: J= 1 2 3 4 Completion times: 41 61 74 Lower bounds: 86 90 91 --- Fathomed by bound ---Subproblem number 5: J= 1 2 3 5 Completion times: 51 63 80 Lower bounds: 89 95 93 --- Fathomed by bound ------ Subproblem 3: Fathomed by enumeration --Subproblem number 6: J= 1 2 4 Completion times: 28 48 61 Lower bounds: 76 79 90 --- Fathomed by bound ---

Flowshop

7/15/98

page 6

Subproblem number 7: J= 1 2 5 Completion times: 38 50 67 Lower bounds: 76 88 92 --- Fathomed by bound ------ Subproblem 2: Fathomed by enumeration ---Subproblem number 8: J= 1 3 Completion times: 19 26 38 Lower bounds: 80 77 84 Subproblem number 9: J= 1 3 2 Completion times: 35 42 58 Lower bounds: 86 86 88 Subproblem number 10: J= 1 3 2 4 Completion times: 41 61 74 Lower bounds: 86 90 91 --- Fathomed by bound ---Subproblem number 11: J= 1 3 2 5 Completion times: 51 63 80 Lower bounds: 89 95 93 --- Fathomed by bound ------ Subproblem 9: Fathomed by enumeration ---Subproblem number 12: J= 1 3 4 Completion times: 25 45 58 Lower bounds: 80 80 91 --- Fathomed by bound ---Subproblem number 13: J= 1 3 5 Completion times: 35 47 64 Lower bounds: 80 86 93 --- Fathomed by bound ---Subproblem 8: Fathomed by enumeration ---Subproblem number 14: J= 1 4 Completion times: 12 31 44 Lower bounds: 76 69 89 Subproblem number 15: J= 1 4 2 Completion times: 28 38 60 Lower bounds: 76 69 89 Subproblem number 16: J= 1 4 2 3 Completion times: 41 48 72 Lower bounds: 86 77 89 Subproblem number 21: J= 1 5 Completion times: 22 34 51 Lower bounds: 76 79 92 --- Fathomed by bound ------ Subproblem 1: Fathomed by enumeration ---Subproblem number 22: J= 2 Completion times: 16 23 39 Lower bounds: 64 68 87 Subproblem number 23: J= 2 1 Completion times: 22 24 45 Lower bounds: 76 74 87 Subproblem number 24: J= 2 1 3 Completion times: 35 42 57 Lower bounds: 86 86 87 Subproblem number 25: J= 2 1 3 4 Completion times: 41 61 74 Lower bounds: 86 90 91 --- Fathomed by bound ---Subproblem number 30: J= 2 3 1 Completion times: 35 37 57 Lower bounds: 86 81 87 Subproblem number 31: J= 2 3 1 4 Completion times: 41 60 73 Lower bounds: 86 89 90 --- Fathomed by bound ---Subproblem number 32: J= 2 3 1 5 Completion times: 51 63 80 Lower bounds: 89 95 93 --- Fathomed by bound ------ Subproblem 30: Fathomed by enumeration -_-Subproblem number 33: J= 2 3 4 Completion times: 35 55 68 Lower bounds: 64 74 91 --- Fathomed by bound ------ Fathomed by Bound ---Subproblem number 34: J= 2 3 5 Completion times: 45 57 74 Lower bounds: 64 83 93 --- Fathomed by bound ------ Subproblem 29: Fathomed by enumeration ---

Subproblem number 40: J= 3 1 2 4 Completion times: 41 61 74 Lower bounds: 86 90 91 ---- Fathomed by bound ----Subproblem number 41: J= 3 1 2 5 Completion times: 51 63 80 Lower bounds: 89 95 93 ---- Fathomed by bound ------- Subproblem 39: Fathomed by enumeration --Subproblem number 42: J= 3 1 4 Completion times: 25 44 57 Lower bounds: 80 79 90 ---- Fathomed by bound ---Subproblem number 43: J= 3 1 5 Completion times: 35 47 64 Lower bounds: 80 86 93 ---- Fathomed by bound ----

```
Subproblem number 44: J= 3 2

Completion times: 29 36 52

Lower bounds: 64 74 88

Subproblem number 45: J= 3 2 1

Completion times: 35 37 58

Lower bounds: 86 81 88

Subproblem number 46: J= 3 2 1 4

Completion times: 41 60 73

Lower bounds: 86 89 90

--- Fathomed by bound ---

Subproblem number 47: J= 3 2 1 5

Completion times: 51 63 80

Lower bounds: 89 95 93

--- Fathomed by bound ---

--- Subproblem 45: Fathomed by enumeration -

Subproblem number 48: J= 3 2 4

Completion times: 35 55 68

Lower bounds: 64 74 91

--- Fathomed by bound ---
```

Subproblem number 49: J= 3 2 5 Completion times: 45 57 74 Lower bounds: 64 83 93 --- Fathomed by bound ------ Subproblem 44: Fathomed by enumeration ---Subproblem number 50: J= 3 4 Completion times: 19 39 52 Lower bounds: 64 65 91 --- Fathomed by bound ---Subproblem number 51: J= 3 5 Completion times: 29 41 58 Lower bounds: 64 74 93 --- Subproblem 37: Fathomed by enumeration ---

Subproblem number 53: J= 5 Completion times: 16 28 45 Lower bounds: 64 68 92 --- Fathomed by bound ---Subproblem 0: Fathomed by enumeration ---Optimal sequence is 1 4 2 3 5

subproblems enumerated = 53

Subproblem number 52: J= 4 Completion times: 6 25 38 Lower bounds: 64 58 89 --- Fathomed by bound ---