

Expected Shortage & Surplus Functions

Cf. §3.3.3 "Expected shortage and surplus functions", in *Stochastic Programming*, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept of Econometrics & OR, University of Groningen, Netherlands

Expected Shortage

page 1

D.Bricker, 2001

Expected Shortage

page 2

D.Bricker, 2001

The **expected surplus function** is

$$G(x) \equiv E_D \left[(D-x)^+ \right] \text{ for } x \in \mathbb{R}$$

In the case of a *discrete* distribution of D ,

$$\begin{aligned} G(x) &= \sum_{d \geq x} (d-x) p_d \\ &= \sum_{d \geq x} dp_d - \sum_{d \geq x} xp_d \\ &= E\{D \mid d \geq x\} - x \times P\{D \geq x\} \end{aligned}$$

Expected Shortage

page 3

D.Bricker, 2001

Expected Shortage

page 4

D.Bricker, 2001

Definitions: Let ω be a *one-dimensional* random variable (e.g., *demand* for a commodity).

Then

- the **expected shortage function** is

$$H(x) \equiv E_\omega \left[(\omega-x)^- \right] \text{ for } x \in \mathbb{R}$$

- the **expected surplus function** is

$$G(x) \equiv E_\omega \left[(\omega-x)^+ \right] \text{ for } x \in \mathbb{R}$$

where $z^+ \equiv \max\{z, 0\}$ and $z^- \equiv \max\{-z, 0\}$.

Example:

Suppose that D has the **discrete** distribution:

Demand d	0	1	2	3
P_d	0.2	0.3	0.4	0.1

Expected surplus function

$$G(x) = E\{D | d \geq x\} - x \times P\{D \geq x\}$$

$$= \begin{cases} [(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1)] - (0.2 + 0.3 + 0.4 + 0.1)x & \text{if } x \leq 0 \\ [(1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1)] - (0.3 + 0.4 + 0.1)x & \text{if } 0 \leq x \leq 1 \\ [(2 \times 0.4) + (3 \times 0.1)] - (0.4 + 0.1)x & \text{if } 1 \leq x \leq 2 \\ (3 \times 0.1) - (0.1)x & \text{if } 2 \leq x \leq 3 \\ 0 & \text{if } 3 \leq x \end{cases}$$

$$= \begin{cases} \mu - x & \text{if } x \leq 0 \\ 1.4 - 0.8x & \text{if } 0 \leq x \leq 1 \\ 1.1 - 0.5x & \text{if } 1 \leq x \leq 2 \\ 0.3 - 0.1x & \text{if } 2 \leq x \leq 3 \\ 0 & \text{if } 3 \leq x \end{cases}$$

Expected shortage function

$$H(x) = x \times P\{D \leq x\} - E\{D | d \leq x\}$$

$$= \begin{cases} 0 & \text{if } x \leq 0 \\ (0.2)x - [(0 \times 0.2)] & \text{if } 0 \leq x \leq 1 \\ (0.2 + 0.3)x - [(0 \times 0.2) + (1 \times 0.3)] & \text{if } 1 \leq x \leq 2 \\ (0.2 + 0.3 + 0.4)x - [(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4)] & \text{if } 2 \leq x \leq 3 \\ (0.2 + 0.3 + 0.4 + 0.1)x - [(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1)] & \text{if } 3 \leq x \end{cases}$$

$$= \begin{cases} 0 & \text{if } x \leq 0 \\ 0.2x & \text{if } 0 \leq x \leq 1 \\ 0.5x - 0.3 & \text{if } 1 \leq x \leq 2 \\ 0.9x - 1.1 & \text{if } 2 \leq x \leq 3 \\ x - \mu & \text{if } 3 \leq x \end{cases}$$

Properties:

$$H(x) = \int_{-\infty}^x F(t) dt$$

$$G(x) = \int_x^{\infty} [1 - F(t)] dt$$

$$H(x) - G(x) = x - E_{\omega}[\omega]$$

Define $\mu^- \equiv E_{\omega}[(\omega)^-]$ and $\mu^+ \equiv E_{\omega}[(\omega)^+]$.

Properties of Expected Shortage Function

H is *nonnegative, nondecreasing, and convex*

Under the assumption that $\bar{\mu} < +\infty$,

- $H(x) < +\infty$ for all $x \in \mathbb{R}$
- H is continuous
- H is Lipschitz continuous with constant 1
- The left and right derivative of H exist everywhere and are given by

left derivative: $H'_- = P\{\omega < x\}$

and

right derivative: $H'_+ (x) = P\{\omega \leq x\}$

- H is subdifferentiable, with subdifferential set (the interval)

$$\partial H(x) = [P\{\omega < x\}, P\{\omega \leq x\}]$$

- H is differentiable at any continuity point x_0 of F with derivative

$$H'(x_0) = F(x_0)$$

- The curve $y = H(x)$ has a horizontal asymptote 0 at $-\infty$.

If $\mu^+ \equiv E[(\omega)^+] < +\infty$, then

- The curve $y = H(x)$ has $\mathbf{x} - \mu$ as asymptote at $+\infty$,
- Outside the convex hull of the support of ω the curve $y = H(x)$ coincides with its asymptotes.

Properties of Expected Surplus Function

G is *nonnegative, nonincreasing, and convex*

Under the assumption that $\mu^+ < +\infty$,

- $G(x) < +\infty$ for all $x \in \mathbb{R}$
- G is continuous
- G is Lipschitz continuous with constant 1
- The left and right derivative of G exist everywhere and are given by

left derivative: $G'_- = -P\{\omega \geq x\}$

and

right derivative: $G'_+ (x) = -P\{\omega > x\}$

- G is subdifferentiable, with subdifferential set (the interval)

$$\partial G(x) = [-P\{\omega \geq x\}, -P\{\omega > x\}]$$

- G is differentiable at any continuity point x_0 of F with derivative

$$G'(x_0) = F(x_0) - 1$$

- The curve $y = G(x)$ has a horizontal asymptote 0 at $+\infty$.

If $\mu^- \equiv E_\omega[(\omega)^-] < +\infty$, then

- The curve $y = G(x)$ has $\mu - x$ as asymptote at $-\infty$,
- Outside the convex hull of the support of ω the curve $y = G(x)$ coincides with its asymptotes.

Define the one-dimensional **expected optimal value** function

$$Q(x) = E_\omega \left[\inf_y \{ q_1 y_1 + q_2 y_2 : y_1 - y_2 = \omega - x; y_1 \geq 0, y_2 \geq 0 \} \right]$$

Here q_1 is the **cost per unit surplus**, and
 q_2 is the **cost per unit shortage**.

If $q_1 + q_2 > 0$, then the unique optimal solution to the LP problem defining Q is

$$\hat{y}_1 = (\omega - x)^+, \hat{y}_2 = (\omega - x)^-$$

so that

$$Q(x) = q_1 G(x) + q_2 H(x)$$

Summary: Assuming $q^+ + q^- > 0$, $\mu^+ < +\infty$, and $\mu^- < +\infty$,

Property	$H(x)$	$G(x)$	$Q(x)$
Monotonicity	nondecreasing	nonincreasing	
Left derivative	$P\{\omega < x\}$	$-P\{\omega \geq x\}$	$-q^+$ $+ (q^+ + q^-) P\{\omega < x\}$
Right derivative	$P\{\omega \leq x\}$	$-P\{\omega > x\}$	$-q^+$ $+ (q^+ + q^-) P\{\omega \leq x\}$
Derivative	$F(x)$	$F(x) - 1$	$-q^+ + (q^+ + q^-) F(x)$
Left asymptote	0	$\mu - x$	$q^+ (\mu - x)$
Right asymptote	$x - \mu$	0	$q^- (x - \mu)$