Expected Shortage & Surplus Functions

Cf. §3.3.3 "Expected shortage and surplus functions", in *Stochastic Programming*, by Willem K. Klein Haneveld and Maarten H. van der Vlerk, Dept of Econometrics & OR, University of Groningen, Netherlands

page 1

Expected Shortage

Definitions: Let ω be a *one-dimensional* random variable (e.g., *demand* for a commodity).

Then

Expected Shortage

• the expected shortage function is

 $H(x) \equiv E_{\omega} \left[(\omega - x)^{-} \right] \text{ for } x \in \mathbb{R}$

• the **expected surplus function** is

 $G(x) \equiv E_{\omega} \left[(\omega - x)^{+} \right] \text{ for } x \in \mathbb{R}$

where $z^{+} \equiv \max\{z, 0\}$ and $z^{-} \equiv \max\{-z, 0\}$.

The expected surplus function is

$$G(x) \equiv E_D[(D-x)^+]$$
 for $x \in \mathbb{R}$

In the case of a *discrete* distribution of *D*,

$$G(x) = \sum_{d \ge x} (d - x) p_d$$

= $\sum_{d \ge x} dp_d - \sum_{d \ge x} xp_d$
= $E\{D \mid d \ge x\} - x \times P\{D \ge x\}$

The expected shortage function is

$$H(x) \equiv E_D\left[\left(x - D \right)^+ \right] \text{ for } x \in \mathbb{R}$$

page 2

In the case of a *discrete* distribution of *D*,

$$H(x) = \sum_{d \le x} (x - d) p_d$$

= $\sum_{d \le x} x p_d - \sum_{d \le x} dp_d$
= $x \times P\{D \le x\} - E\{D \mid d \le x\}$

Expected Shortage

D.Bricker, 2001

D.Bricker, 2001

D.Bricker, 2001

Expected surplus function Example: $G(x) = E\{D \mid d \ge x\} - x \times P\{D \ge x\}$ Suppose that *D* has the *discrete* distribution: $\left[\left[(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1)\right] - (0.2 + 0.3 + 0.4 + 0.1)x \quad \text{if } x \le 0\right]$ $\left[\left[(1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1) \right] - (0.3 + 0.4 + 0.1)x \quad \text{if } 0 \le x \le 1 \right]$ **Demand d** 0 1 2 3 0.2 0.3 0.4 0.1 $= \left\{ \left[(2 \times 0.4) + (3 \times 0.1) \right] - (0.4 + 0.1)x \quad \text{if } 1 \le x \le 2 \right\}$ P_{d} $(3 \times 0.1) - (0.1)x$ if $2 \le x \le 3$ 0 if $3 \le x$ $\begin{bmatrix} \mu - x & \text{if } x \leq 0 \end{bmatrix}$ 1.4 - 0.8x if $0 \le x \le 1$ $= \begin{cases} 1.1 - 0.5x & \text{if } 1 \le x \le 2 \end{cases}$ 0.3 - 0.1x if $2 \le x \le 3$ 0 if $3 \le x$ Expected Shortage D.Bricker, 2001 Expected Shortage D.Bricker, 2001 page 5 page 6 **Expected shortage function Properties:** $H(x) = x \times P\{D \le x\} - E\{D \mid d \le x\}$ $H(x) = \int_{-\infty}^{\infty} F(t) dt$ $\int 0 \quad \text{if } x < 0$ $G(x) = \int_{-\infty}^{\infty} \left[1 - F(t) \right] dt$ $(0.2)x - [(0 \times 0.2)]$ if $0 \le x \le 1$ $= \left\{ (0.2 + 0.3) x - \left[(0 \times 0.2) + (1 \times 0.3) \right] \quad \text{if } 1 \le x \le 2 \right\}$ $H(x) - G(x) = x - E_{\omega}[\omega]$ $(0.2+0.3+0.4)x - [(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4)]$ if $2 \le x \le 3$ Define $\mu^{-} \equiv E_{\omega} \left[(\omega)^{-} \right]$ and $\mu^{+} \equiv E_{\omega} \left[(\omega)^{+} \right]$. $[(0.2+0.3+0.4+0.1)x - [(0 \times 0.2) + (1 \times 0.3) + (2 \times 0.4) + (3 \times 0.1)]$ if $3 \le x$ $\begin{bmatrix} 0 & \text{if } x \leq 0 \end{bmatrix}$ 0.2x if $0 \le x \le 1$ $= \{0.5x - 0.3 \text{ if } 1 \le x \le 2\}$ 0.9x - 1.1 if $2 \le x \le 3$ $|x-\mu|$ if $3 \le x$ D.Bricker, 2001 Expected Shortage D.Bricker, 2001 Expected Shortage page 7 page 8

Properties of Expected	1 Shortage Function	n	• H is differentia	able at any continuity poi	nt v. of F with	
			• H is differentiable at any continuity point x_0 of F with			
H is nonnegative, nondecreasing, and convex			derivative			
Under the assumption that $\mu^- < +\infty$,		$H'(x_0) = F(x_0)$				
• $H(x) < +\infty$ for all $x \in \mathbb{R}$		• The curve $y = H(x)$ has a horizontal asymptote 0 at $-\infty$.				
• H is continuous						
• H is Lipschitz continuou	as with constant 1					
• The left and right deriva	tive of H exist everyw	here and are given				
by						
left derivative:	$H'_{-} = P\{\omega < x\}$					
and right derivative	$:H'_+(x) = P\{\omega \le x\}$					
• H is subdifferentiable, with subdifferential set (the interval) $\partial H(x) = [P\{\omega < x\}, P\{\omega \le x\}]$						
Expected Shortage	page 9	D.Bricker, 2001	Expected Shortage	page 10	D.Bricker, 2001	

If $\mu^+ \equiv E[(\omega)^+] < +\infty$, then

- The curve y = H(x) has **x µ** as asymptote at +∞,
- Outside the convex hull of the support of ω the curve y = H(x) coincides with its asymptotes.

Properties of Expected Surplus Function

G is *nonnegative*, *nonincreasing*, and *convex*

Under the assumption that $\mu^+ < +\infty$,

- $G(x) < +\infty$ for all $x \in \mathbb{R}$
- G is continuous
- G is Lipschitz continuous with constant 1
- The left and right derivative of H exist everywhere and are given

by

left derivative: $G'_{-} = -P\{\omega \ge x\}$

and

right derivative: $G'_+(x) = -P\{\omega > x\}$

• G is subdifferentiable, with subdifferential set (the interval) $\partial G(x) = \left[-P\{\omega \ge x\}, -P\{\omega > x\}\right]$

Expected Shortage

D.Bricker, 2001

 G is differentiable at any continuity point x₀ of F with derivative G'(x₀) = F(x₀) −1 The curve y = G(x) has a horizontal asymptote 0 at +∞. 			 If μ⁻ ≡ E_ω[(ω)⁻]<+∞, then The curve y = G(x) has μ -x as asymptote at -∞, Outside the convex hull of the support of ω the curve y = G(x) coincides with its asymptotes. 			
Expected Shortage	page 13	D.Bricker, 2001	Expected Shortage	page 14	D.Bricker, 2001	

Define the one-dimensional **expected optimal value** function

$$Q(x) = E_{\omega} \left[\inf_{y} \{ q_1 y_1 + q_2 y_2 : y_1 - y_2 = \omega - x; y_1 \ge 0, y_2 \ge 0 \} \right]$$

Here q_1 is the cost per unit **surplus**, and

 q_2 is the cost per unit **shortage**.

If $q_1+q_2>0$, then the unique optimal solution to the LP problem defining Q is

$$\hat{y}_1 = (\omega - x)^+, \hat{y}_2 = (\omega - x)^-$$

so that

$$Q(x) = q_1 G(x) + q_2 H(x)$$

Summary: Assuming $q^+ + q^- > 0$, $\mu^+ < +\infty$, and $\mu^- < +\infty$,

Property	H(x)	G(x)	Q(x)
Monotonicity	nondecreasing	nonincreasing	
Left derivative	$P\{\omega < x\}$	$-P\{\omega \ge x\}$	$-q^+$
			$+ (q^+ + q^-) P\{\omega < x\}$
Right derivative	$P\{\omega \le x\}$	$-P\{\omega > x\}$	$-q^+ + (q^+ + q^-) P\{\omega \le x\}$
Derivative	F(x)	F(x)-1	$-q^+ + (q^+ + q^-)F(x)$
<mark>Left asymptote</mark>	0	$\mu - x$	$q^+(\mu-x)$
Right asymptote	$x-\mu$	0	$q^{-}(x-\mu)$

page 15

D.Bricker, 2001

page 16

D.Bricker, 2001