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Definitions:  Let ω be a one-dimensional random variable

(e.g., demand for a commodity). 

Then

the expected shortage function is

( ) ( )H x E xω ω − ≡ −  for x ∈

the expected surplus function is

( ) ( )G x E xω ω + ≡ −  for x ∈

where { }max ,0z z+ ≡ and { }max ,0z z− ≡ − .
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The expected surplus function is

( ) ( )DG x E D x + ≡ −  for x ∈

In the case of a discrete distribution of D,
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The expected shortage function is

( ) ( )DH x E x D + ≡ −  for x ∈

In the case of a discrete distribution of D,
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Example:

Suppose that D has the discrete distribution:

Demand d 0 1 2 3
Pd 0.2 0.3 0.4 0.1
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Expected surplus function
( ) { } { }
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0 0.2 1 0.3 + 2 0.4 + 3 0.1 0.2 0.3 0.4 0.1     if x 0

1 0.3 + 2 0.4 + 3 0.1 0.3 0.4 0.1        if   0 x 1

2 0.4 + 3 0.1 0.4 0.1        if   1 x 2

3 0.1 0.1      if   2 x 3
0     if   3
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Expected shortage function
( ) { } { }

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

|

0   if x 0

0.2 0 0.2         if   0 x 1

0.2 0.3 0 0.2 1 0.3         if   1 x 2

0.2 0.3 0.4 0 0.2 1 0.3 + 2 0.4       if   2 x 3

0.2 0.3 0.4 0.1 0 0.2 1 0.3 + 2 0.4 + 3 0.1     
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Properties:

( ) ( )x
H x F t dt

−∞
= ∫

( ) ( )1
x

G x F t dt
∞
 = − ∫

( ) ( ) [ ]H x G x x Eω ω− = −

Define ( )Eωµ ω −−  ≡   and ( )Eωµ ω ++  ≡   .
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Properties of Expected Shortage Function
H is nonnegative, nondecreasing, and convex

Under the assumption that µ− < +∞,

• ( )H x < +∞ for all x ∈

• H is continuous

• H is Lipschitz continuous with constant 1

• The left and right derivative of H exist everywhere and are given

by

left derivative: { }H P xω−′ = <
and

right derivative: ( ) { }H x P xω+′ = ≤

• H is subdifferentiable, with subdifferential set (the interval)
( ) { } { },H x P x P xω ω ∂ = < ≤ 
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• H is differentiable at any continuity point x0 of F with

derivative

( ) ( )0 0H x F x′ =

• The curve ( )y H x= has a horizontal asymptote 0 at −∞. 
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If ( )Eµ ω ++  ≡ < +∞  , then

• The curve ( )y H x= has x − µ as asymptote at +∞, 

• Outside the convex hull of the support of ω the curve 

( )y H x= coincides with its asymptotes.
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Properties of Expected Surplus Function
G is nonnegative, nonincreasing, and convex

Under the assumption that µ+ < +∞,

• ( )G x < +∞ for all x ∈

• G is continuous

• G is Lipschitz continuous with constant 1

• The left and right derivative of H exist everywhere and are given

by

left derivative: { }G P xω−′ = − ≥
and

right derivative: ( ) { }G x P xω+′ = − >

• G is subdifferentiable, with subdifferential set (the interval)
( ) { } { },G x P x P xω ω ∂ = − ≥ − > 
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• G is differentiable at any continuity point x0 of F with

derivative

( ) ( )0 0 1G x F x′ = −

• The curve ( )y G x= has a horizontal asymptote 0 at +∞. 
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If ( )Eωµ ω −−  ≡ < +∞  , then

• The curve ( )y G x= has µ −x  as asymptote at −∞, 

• Outside the convex hull of the support of ω the curve 

( )y G x= coincides with its asymptotes.
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Define the one-dimensional expected optimal value
function

( ) { }1 1 2 2 1 2 1 2inf  q : ; 0, 0
y

Q x E y q y y y x y yω ω = + − = − ≥ ≥  

Here q1 is the cost per unit surplus, and

q2 is the cost per unit shortage. 

If q1+q2 > 0, then the unique optimal solution to the LP

problem defining Q is

( ) ( )1 2,y x y xω ω+ −= − = −

so that

( ) ( ) ( )1 2Q x q G x q H x= +
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Summary:  Assuming 0q q+ −+ > , µ+ < +∞, and µ− < +∞,

Property H(x) G(x) Q(x)
Monotonicity nondecreasing nonincreasing
Left derivative { }P xω < { }P xω− ≥

( ) { }
q

q q P xω

+

+ −

−

+ + <

Right
derivative

{ }P xω ≤ { }P xω− >
( ) { }
q

q q P xω

+

+ −

−

+ + ≤

Derivative ( )F x ( ) 1F x − ( ) ( )q q q F x+ + −− + +

Left asymptote 0 xµ − ( )q xµ+ −
Right
asymptote

x µ− 0 ( )q x µ− −


