Reducing Dimensionality by Relaxation

Lagrangian vs. Surrrogate Relaxation
©2001
Dennis L. Bricker
Dept. of Industrial Engineering
The University of Iowa

Reducing dimensionality of DP

The state space for the two-dimensional DP model has $16 \times 13=\mathbf{2 0 8}$ elements

Suppose that we relax the volume restriction, using Lagrangian relaxation with multiplier ("shadow price") λ :

$$
\operatorname{Max} \sum v_{j} x_{j}+\lambda\left(b_{2}-\sum_{j=1}^{n} a_{2 j} x_{j}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(v_{j}-a_{2 j}\right) x_{j}+\lambda b_{2}
$$

The shadow price is interpreted as the value of one unit of volume, so that the profit contribution vj of an item must be adjusted by subtracting the value of the volume which it occupies, $\lambda \mathrm{a}_{2 \mathrm{j}}$.

Consider a knapsack with

 a weight capacity of $\mathbf{1 5}$ and a volume capacity of $\mathbf{1 2}$.| Item \# | Value | Weight | Volume |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 6 | 2 |
| $\mathbf{2}$ | 3 | 10 | 3 |
| $\mathbf{3}$ | 5 | 6 | 8 |
| $\mathbf{4}$ | 10 | 2 | 6 |
| $\mathbf{5}$ | 2 | 10 | 2 |
| $\mathbf{6}$ | 10 | 5 | 6 |
| $\mathbf{7}$ | 10 | 2 | 4 |
| $\mathbf{8}$ | 13 | 6 | 4 |
| $\mathbf{9}$ | 4 | 3 | 4 |
| $\mathbf{1 0}$ | 8 | 5 | 2 |
| $\mathbf{1 1}$ | 6 | 5 | 5 |
| $\mathbf{1 2}$ | 4 | 10 | 7 |

The result is a one-dimensional knapsack problem which is more easily solved, having a much smaller state space (only 16 elements, rather than 208).

The difficulty lies in selecting the best values of the shadow price, λ : generally the search for the best λ requires solution of a sequence of onedimensional knapsack problems.

Furthermore, it may happen that the method fails to yield the optimal solution!

Lagrangian Relaxation
If initially, $\lambda=0$, the result is

page 5
Since the volume capacity is still exceeded, we increase the Lagrangian multiplier again, to $\lambda=2.00$, resulting in the solution:

item	Value	Weight	Volume
7	10	2	4
8	13	6	4
10	8	5	2
Total:		13	10
Capaci		15	12

Value of contents: 11
Value of Lagrangian relaxation:
$\sum\left(v_{j}-\lambda a_{2 j}\right) x_{j}+\lambda b_{2}=11+\lambda \times 12=35$
Another improvement on the upper bound!

Since the volume restriction is violated, we increase the Lagrangian multiplier. Arbitrarily, let us set it equal to 1.0. This results in the solution:

item	Value	Weight	Volume
4	10	2	6
7	10	2	4
8	13	6	4
10	8	5	2
Total:		15	16
Capaci		15	12

Volume of contents: 16 (exceeds volume restriction)
Value of contents: 25
Value of Lagrangian relaxation:
$\sum\left(v_{j}-\lambda a_{2 j}\right) x_{j}+\lambda b_{2}=25+\lambda \times 12$
$=37$,
which is an improved upper bound on the optimum.
page 6
The volume restriction is now slack, indicating that we should now decrease the multiplier. Linear interpolation would suggest $\lambda=1.3333$, which results in the solution:

Lambda $=4 / 3$			
item	Value	Weight	Volume
4	10	2	6
7	10	2	4
8	13	6	4
10	8	5	2
--	-	15	16
Total:	15	12	
Capacity:			

[^0]Since the volume restriction is again violated, we increase the Lagrangian multiplier, this time to 1.6667 :
Lambda $=5 / 3$
*** Optimal value is 14 ***
*** There are 2 optimal solutions ***
Optimal Solution No. 1 Optimal Solution No. 2

Volume of contents: 10

Volume of contents: 16

Value of contents is $14 \Rightarrow$ value of Lagrangian relaxation is

$$
\sum_{j}\left(v_{j}-\lambda a_{2 j}\right) x_{j}+\lambda b_{2}=14+\lambda \times 12=\mathbf{3 4}
$$

(an improvement upon the upper bound).

Since volume capacity (12) lies within the interval $[10,16]$,
the Lagrangian relaxation method has failed to find the solution.
Reducing dimensionality of DP page 10

By using a 2-dimensional state variable, we can find the two optimal solutions, with value 31 :

Optimal Solution No. 1				Optimal Solution No. 2			
stage		tate	decision	stage		tate	decision
12	15	12	Omit	12	15	12	Omit
11	15	12	Omit	11	15	12	Omit
10	15	12	Include	10	15	12	Include
9	10	10	Omit	9	10	10	Omit
8	10	10	Include	8	10	10	Include
7	4	6	Omit	7	4	6	Include
6	4	6	Omit	6	2	2	Omit
5	4	6	Omit	5	2	2	Omit
4	4	6	Include	4	2	2	Omit
3	2	0	Omit	3	2	2	Omit
2	2	0	Omit	2	2	2	Omit
1	2	0	Omit	1	2	2	Omit
0	2	0		0	2	2	
Total w	ht:	13		Total	ht:		
Total v	me:	12		Total	me:	10	

The Lagrangian duality gap is therefore $34-31=3$, almost 10%.
Reducing dimensionality of DP page 12

Surrogate Relaxation

In Lagrangian relaxation, the dimension of the state space is reduced by enforcing only one of the two resource restrictions, and assigning a "shadow price" to the other.

In surrogate relaxation, the dimension of the state space is reduced by replacing the original two resource restrictions with a nonnegative linear combination, i.e., multiplying each resource restriction by a nonnegative number and summing them.

In each type of relaxation, the set of feasible solutions is increased by this type of relaxation, so that the optimal solution of the one-dimensional knapsack problem may not be feasible in the original two-dimensional knapsack problem

$$
\begin{aligned}
& \text { Maximize } \sum_{j=1}^{n} v_{j} x_{j} \\
& \text { subject to } \sum_{j=1}^{n}\left(\mu_{1} a_{1 j}+\mu_{2} a_{2 j}\right) x_{j} \leq \mu_{1} b_{1}+\mu_{2} b_{2} \\
& x_{j} \in\{0,1\} \text { for all } j=1,2, \ldots n
\end{aligned}
$$

As in the case of Lagrangian relaxation, we are left with a one-dimensional knapsack problem to be solved for every choice of multiplier vector.

Assuming that the original resource requirements are integer, in order that the coefficients in this knapsack constraint be integer, we require that the multipliers μ_{1} and μ_{2} be integer. This then means that the state space must be expanded to include $\left\{0,1,2, \ldots \mu_{1} b_{1}+\mu_{2} b_{2}\right\}$.

Reducing dimensionality of DP
page 14
Example: Begin arbitrarily with multipliers $\left(\mu_{1}, \mu_{2}\right)=(1,1)$.
Note: the state space is now $\{0,1,2, \ldots[15+12]\}$, i.e., of cardinality 28.

Optimal Solution No. 1			Optimal Solution No. 2		
item Value	Weight	Volume	item Value	Weight	Volume
410	2	6	610	5	6
710	2	4	710	2	4
813	6	4	813	6	4
Total:	10	14	Total:	13	14
Capacity:	15	12	Capacity:	15	12

Since the volume constraint is violated by both solutions, increase that resource's surrogate multiplier relative to that of the weight constraint:

$$
\left(\mu_{1}, \mu_{2}\right)=(1,2)
$$

so that the state space is now $\{0,1, \ldots[15+2 \times 12]\}$, with cardinality 40.

The solution of the 1-dimensional knapsack problem obtained with surrogate multipliers $\left(\mu_{1}, \mu_{2}\right)=(1,2)$ is

Since the volume constraint is again violated, we further increase that resource's surrogate multiplier relative to that of the weight constraint:

$$
\left(\mu_{1}, \mu_{2}\right)=(1,3)
$$

so that the state space is now $\{0,1,2, \ldots[15+3 \times 12]\}$ with cardinality $\mathbf{5 2}$.

Reducing dimensionality of DP
page 17

Note that, since the surrogate relaxation isn't effected by scaling the multipliers, they can be normalized so as to sum to 1.0 , and the search for the best surrogate multipliers is a one-dimensional search in the interval $[0,1]$

The optimal solution of the one-dimensional knapsack problem obtained with surrogate multipliers $\left(\mu_{1}, \mu_{2}\right)=(1,3)$ is

Both of these solutions are feasible in the original 2-dimensional problem!
Hence they are optimal in the original problem-- the surrogate duality gap is zero, while the Lagrangian duality gap was positive!

Reducing dimensionality of DP page 1
Note: Theory tells us that, in general,
surrogate duality gap \leq Lagrangian duality gap!

The "downside"
if we are using DP to solve the surrogate relaxation, we must restrict the multipliers to be integer (or equivalently, rational). The result is that the size of the state space must be increased, so our purpose of reducing the state space of the 2-dimensional DP is defeated!

See: Greenberg, H. J. and W. P. Pierskalla (1970). "Surrogate Mathematical Programming." Operations Research 18: 924-939.

[^0]: Volume of contents: 16 (infeasible!) Value of contents: 20
 \Rightarrow Value of Lagrangian relaxation:
 $\sum\left(v_{j}-\lambda a_{2 j}\right) x_{j}+\lambda b_{2}$
 $=20+\lambda \times 12=36$
 (upper bound is not improved!)

