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|Disc rete Consider a system with a finite set

T[ime of states: {s,s,,.. sy}
Markov The system is observed at a certain

|C hain sequence of points in time, or stages.

The system may make a transition
from one state to another between
observations, according to known
probability distributions.

Xp =state of system
at time n

Transition Probabilities | pﬁ'“’: P{Xy=j | Xp1=i}

&
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Notation

Pij
G
Ny
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transition probability
n-stage transition probability
steady-state probability
first-passage probability

first-passage time
mean first-passage time

&

Suppose that on Wednesday the weather is HOT.

What is the probability that on Saturday the weather is

either MODERATE or COOL? ¢

w5 V2 Vs
P=ul|a Vs e
|55

Row 1 of the matrix P gives the
probability distribution of the
weather on Thursday:

What is the distribution of the
weather on Friday?

@D.Bricker, U. of Iowa, 1998

Definitions & Notation
Summer Weather Example
Chapman-Kolmogorov Equation
Engine Repair Policy Example

Elevator Example
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If the Markov chain is séaéionary:, then the
transition probabilities are the same at every
stage, i.e.,

-1 . .
P?j 'n:Pijzp{Xn:J | Xp1 =i}

Note Uhat the sigte 5t stage fed
123y depenrd ONLT ofr the state
Aty e frmmecigtaly preceding
stage 0, and NOT on any esrlier
Listory of Whe systanm.
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[[ Example: Summer Weather ]]

—— g model for use by a Uiy company i planting day ~to-day
revairs & mamtenance

s !

w2 Ve
P2 Vs e
|55

stage= 1 day

I3 J
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Compute the probability that it is Cool on Friday by
conditioning on Thursday's weather:
P{Cool on Friday | Hot on Wednesday}
= P{Cool Friday | Hot Thursday jxP{Hot Thursday | Hot Wed.}
+ P{Cool Friday| Moderate Thurs*P{Moderate Thurs | Hot Wed.}

+ P{Cool Friday |Cool Thursday xP{Cool Thursday |Hot Wed.}
=p,P. tP_DP_*tP.P

11713 12723 13733

@D.Bricker, U. of Towa, 1998

page 1




Discrete-time Markov Chains

ool 3
P{Cool on Friday | Hot on Wednesday} ore
p13
= + +
PPy 7 PPy ¥ BBy, [p“ P pla] Pr
row L of P
p33

QYA YORVAVONVAVS

= 0.19444444

lamant i row f, cofiunng 3
of PE

The probability of going from state ! (FOT) to state 3 ool
i TR stages (days)
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[[Thr‘ee -day For‘ecast,]]

H M ¢
, H 0.39815 0.40278 0.19907
P" -1 0.40278 0.39815 0.19907
¢ 0.39815 0.39815 0.2037

5o, if Wednesday is HOT, the probability that Saturday (three
days hence) is Moderate is 0.40278,

and the probability that it is Cool is 0.19907

The utility company can be 60.185% certain, then, that
Saturday will NOT be hot.

&

Long-Run
Behavior

of
Markov Chains

Not regular:

s if niseven
01

e

P =
o1 ., .
[lo]drnsodd
Not regular:
1 1 1
1 0% 2
WY
Ls P=| 1 0 O

1 0 O
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In general, the probability that the system makes a
transition from state i to state j in 2 stages is

nn+2

Pij =2 PP Kj
k
which is the element in row i & column j of p?

0.4167 0.3889 0.1944
0.3889 0.4167 0.1944
0.3889 0.3889 0.2222

p’-
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The Chapman-Kolmogorov Equation
(n)

Let pij = P{system is in state j at stage n,
given that system is in state j
initially}

Then (n) ry (n-r)

for any i&j, and

Py = % Pix Py rsuchthat 0<rin

(n)
That is, Py & the inner product of rows i of 2T

&

and cotumn <7 of P
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& Markov chainis regular if

there is some k such that its transition probability matrix P,
raised to the power k, has strictly positive elements only.

L 1
B30, 7
T Y2 % e
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If a Markov chain is REGULAR, then
T (n) ) tindependant of the
n_‘)glmp ij =% nrtial state 1)
That is, n | T
lim P = 7%z -y
n— +oo
Ty M- Ny

The limiting probability =xn; is called a

steadyv-state probabfifty
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Chapman- (n) r) (n-r) o
s for any i&j, and
Eg:i:toigﬁr * Py = Z Pic Pyj rsuchthat 0<rén
(n (n-1
= Pl ) = Z P1 ) P
k
im p® = (n-1)
= lim pi” = 3 lim pir™ py
= nj = % T Pkj

lim pf =
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H M C
1/ 1/ 1
a b o s

P2 Vs e
s\ Vs

n=nP

7, isthe product of &t and
column 1 of P:

Ty = Pty tParTsHPsiTs

=1/3n1+1/2n2+1/3n3
== 2/3n1—1/2n2—1/3n3=0
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%nl—i/znz—%na:O
—1/2n1+2/3n2—1/3n3=0
—1/6n1—1/6n2+2/3n3=0

We need also the equation ¢, + R, +n,=1

This system of equations
is linearly dependent
{the sum of the left sides
is zerol)
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Example

Consider an engine repair shop which specializes in the
repair of two types of automobile engines: gasoline & diesel

The overhaul of a diesel engine requires two days, while
the overhaul of a gasoline engine requires a single day.

Each morning, the probability of receiving a diesel engine for
overhaulis Pp= ;.

The probability of receiving a gasoline engine for overhaul is

Ps =15,
The profit per day for overhauling a diesel engine is $20, and
for a gasoline engine is $23.

&
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Therefore, the limiting probabilities must
satisfy the conditions:

1) =

Zn

j

2) nJ Z TiPij @'mmatnxform = RPQ
i

3) nj>0
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Ty = P1ft P2t Pslts
= 1/21t1+ 1/3n2+ 1/3n3
- 1/2n1 +2/3n2— 1/31c3=0

T3 = P1aftytP2altHPslts

=1/6n1+1/6n2+1/3n3
= —1/6:t1—1/6n2+2/3n3=0
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n, isthe product of 7 and
column *2 of P

n, isthe productof =m and
column *3 of P

2/3n1—1/2n2—1/3n3=0
—1/21\'.1+2/31l'.2—1/37t3=0

Discarding any one
of the first three
EQUALIONS gIves Us
a system Wit

rank/
n, +mn, +mn;=1
. 2 2 1
The solution: ;= 75 n,=7% Ry= /5

[[ "Long Range Forecast” ]]

That is, "in the long run”, summer days will be HOT or MODERATE
with probability 40% each, and COOL with probability 20%.
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Work which cannot be done on the day received is lost to
competitor repair shops.

What is the best policy for accepting jobs? E

e Ifonly 1 day's work is complete on a diesel engine, any
jobs which arrive must be refused.
e Otherwise, if only one engine type is received, that job
should be accepted.
e If not in the midst of overhauling a diesel engine, and BOTH
engine types arrive, we can
a) give preference to the DIESEL engine

b) give preference to the GASOLINE engine

Fhich is the better chofce?
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Markov Chain Model

Let's assume that the system (repair shop) is observed
at midday each day.

What are the possible states of the system?

(1) repair shop is idle
(2) first day of work on diesel engine is in progress

(3) second day of work on diesel engine is in progress

{4) work on gasoline engine is in progress

&
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(1) shopisidle

(2) day *1 on diesel

(3) day *2 on diesel

(4) work on gasoline engine

Some transitions occur with probabilities which
are the same, whether preference is given to
diesel or gasoline engines.
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| Alternative A- Give preference lo diesel engines E

a i
A) /3 0 /3 Slesdy-Siele Distribuiion
0 0 1 0 .
P- L ki
e o % i 025
2
RS
4 025

£Expected profit-day:
Som,+ $20m,+ %205+ $23 1, = $1575
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| Alternsiive 8- Give preference la gasaiine engines E

5 O

o 1 0

Slesdy-Stete Distritivtion

i ARy - A
A BTt
5t O ) 3 0142857

4 0428571

Expected profit-day:

Som,+ $20m,+ $20ms+ %231, = Y15571413
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| Frensition Disgren §

(1) shopisidle

(2) day *1 on diesel

(3) day *2 on diesel

(4) work on gasoline engine

what transitions are possible?
what 1s the probability of each transition?
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(1) shopisidle
1/3 (2) day *1 on diesel
(3) day *2 on diesel
(4) work on gasoline engine

Y
Probability of NO arrivals: (1-pp)(1-pg) = (1= )1-15) =14

Probability that gasoline engine arrives, but no diesel:
(1-pplpg = (1-15)Y, =14
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| Allernstive B: Give preference 1o gasaling engines h

[States )

(1) shop is idle
¥~ (2) day*1on diesel
(3) day *2 on diesel
(4) waork on gasoline engine

A
Probability that diesel engine arrives, but no gasoline engine:
Ppll-pg) = J501-15)= %
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{a) Prefer | (b) Prefer
Palicy diesel gasoline
engine engine
tapected S1575  [%15571413
profit-day

The better policy is to accept the diesel engine when the
shop is ready for the next engine, and both types arrive.
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]

L A Self-Service [Elevator inafour-story Questions

building operates solely according to the buttons pushed inside o )
the elevator. That is, a person on the outside cannot "call” the ® |f you enter the building on the first floor,

elevator to the floor he where he is. (Consequently, the only what is the probability that you will find the elevator there?
way to get the elevator is for someone else to get off at your
floor.)

® |f the elevatoris not at the first floor but at the second
floor, how many trips is it expected to make before

Of the passengers entering the building at the first floor and returning to the first floor?

wishing to use the elevator, half go to the second floor and

the other half divides equally between the third and fourth floors.

Passengers above the first floor want to go to the first floor in
80% of the cases. Otherwise, they are equally likely to want to
go to the other two floors.

&
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Markov Chain Model

First Passage Time

State i = location of the elevator (i=1,2,3,4) at end of trip Define the random variable

Stage n = trip number N,-J- = the number of the stage at which the system,

Transition Probabilities starting in state i, #7rsf reaches state j.

to
from~_1 2 3 4

1 0 05 025 025

2 08 0 0.1 0.1
3 08 0.1 0 0.1
4 | 08 01 01 0
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First-Passage Probabilities
f(n)

Computation of fi(jn)

ij = probability that the system, starting (n) o '
in state i , will first reach state ] We express pij by conditioning on the step, k, at which the
in exactly n steps system first reaches state j:
(n n system in | system first system first
= p{Nij =n} p__n - z P{ state j at | reaches state }x P{ reaches state j }
1] = stepn j at step k at step k
Racal] that py" i the probabilily thet, N o
. . ) .. \ n-| k.
SEENTIng i1 IS8 7, 18 S\Sien 15 1 Si5te ] = 2 Py % fij
arter n (bt perhans NOT for ihe 1irst visit!) k=l

&
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Solve ror fi(jn): T
ny _ {n) {n-k) (k)
w2 (k) (k) fiim = Py~ Z Py % Ty
Py~ = 2P x £ k=1
k=1
n-1 . 5
_ KRecursive Compulation.
= 2.0 e 6 Compute th fPie., p
— i i ompute the powers of P, i.e., Py,
n-1
© ¢ _ | ey _ o) (n-k) (k) - {N_ (2)
= 0 00 = |60 = - 2 WIth = by - compute Ty .
k=1 Then, knowing ﬂ-j and f;~ , compute f;;™, etc.

ij »
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| £revotor Exompre ] . L .
Elevator Exemple f(n) _ pn {n-k) % f(k) f,y =08 w () (h-K) (k)
i Pij Pij i fim = pind oyl ol
p ] ] (2) ij ij i j
k=1 foy =0.16 k=1
12 3 4
1| 0 0.5 0.25 0.25 M _ p3 2
= = (3 (3) 3-k) ¢ (k)
3 88 0.0 0t &1 for =Py = 08 1 2 3 4 far =P% 2 p(“ )f21
aLo-soton o 1 1| 0.16 0.415 0.2125 0.2125 (3) R (1) ~(2)
@ _ 2 _ (2-k) ¢ () 2| 0.672 0.122 0.103 0.103 =p2 - 2t fi2
p2 far = P2 E,pn fai 3| 0l672 0.123 0.102 0.103 P2 = P21 Py 2
4| 0672 0.123 0.103 0.102
1z 3 4 RO
182, 08 8:97 0078 RPNy = 1= 0.672-08x0.8-0.0x0.16
3| 0116 0.41 0.22 0.21 =0.16-0.0x0.8 21 ' ' ' ' '
4| 016 0.41 0.21 0.22 016
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n-1
_ ~fn (n-k) (k)
v = Py ‘2;%‘ X T

(1)
i =08
(n)

2 f.
rz] = 016

(3)
=0,

-0.032 @

p4 21

0.672 0.1225 0.10275 0.10275
0.2624 0.3566 0.1905 0.1905
0.2624 0.3565 0.1906 0.1905
0.2624 0.3565 0.1905 0.1906

4 _ (@ _
= f =Py,

= Py

(4 3 (k) ¢ (K)
k2=1p,] fai

(3(1) _ (2 ~(2) {1)(3)
PR P R Pl S P

=02624-0-08x0.16-0.16%X0.8

=0.0064
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Fleyveior Fxemplie

First ¥isit Probabilitie
to State 1
from State 2

0.0064

0.00128

n= 1 2
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Mean First Passage Time

Computation of m

Fleyator Fxemple |

21
n £ n 5]
1 038 038
2 0.16 032
3 0.032 0.096
4 0.0064 0.0256
5 0.00128 0.0064
6 0.000256 0.001536
7 0.0000512 0.0003584
8 0.000002048 0.00008192
~ 125
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=0.032
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Fileyveilar Fxenmpi

First Visit Probabilities
to State 1
from State 2

n P

1 0.8

2 0.16

3 0.032

4 0.0064
5 0.00128
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Mean First Passage Time

m;; = expected number of stage at which the
system, starting in state i, first reaches state j

o0
mi,- = ENij = Z n fg‘)

n=1

where
N]-J- = the number of the stage at which the system,
starting in state i, #7rsf reaches state j.

ag

PNy =n}= 1,
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| Mean First Passage Time mij = BNy = 3 nfg‘)

n=1

An alternative to computing this infinite sum:

ENyj) = 20 ENig| ¥ = KiIXPEX = k)
k

= E{Nij|><|=j}P{)<]=j b2 E{N1j|X1=k}XP{ K=K}
k=]
1 Pij 1+ EN Pik

= Py +k§j L1+ BN Tpy,
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ENij} = 1xpy; +k§j [1+EMNGH Py,

BNl = Pij + 2 Py + 2 EN by,
ki K] !
ij i mkj
= mij = 1 +kz. PikMkj /I we torm these equations
=] ror g tixed p and sl possible

Fes oF I, we gel 7 svsien
o finear equstions i
Ty pe Mg Mzpe &Iy,
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mij = 1 +k§j PikMk;j

The above equation, with j fixed at the value 1
andi=1, 2, 3, & 4, yields:

P=10 my =1+ piaMag+ Pz My + PrgMy,
i=2: + P2oMai+ PazMzy + PagMayy
=30 Mz = 1+ P3pMyy+ PazMay + PgyMyy

i=4:

My, =1

My =1+ Pay Myt PyzMzy + Pag My
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By solving four sels of four equations,
we obiain all the mean first passage times.

|Mean First Passage Times §

Elevator
to
f 1 2 3 4
r
o 1]2.25 2.8 5.5 5.5
m 2[1.25 3.96 6 6
3|11.25 3.6 6.6 6
4|1.25 3.6 6 6.6
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Simulation results: k

The array RUN has now been globally defined in the workspace.

Each row of the array represents a repetition of the
simulation.
Note: Column 1 represents stage 0, i.e. the initial state.

Ka
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Fleyvelor Fxemple

What is m,,, i.e.,
the expected number of

page 7

m;i; = I+Z P My
ij K] ik k]

trips required to reach
floor #1 if the elevator
is currently on floor #27

To compute m,, from the above equation requires
that we also compute m,,, mz,, and my,

e, My, k=2
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OO0 0O
==Yy

My =1+ PraMygy+ Pz My + Py My,
5 _
My =14 Pop Mgy + Paz Mz + PogMay

Mzy=14 P3aMzy+ PszMzyt+ PsyMyy

cooo
i@
cocoo T
[
[=Y=Ye¥al
T

Myy =T+ Py Moyt Paz Mgyt Pyy My,

m,,=1+0.9m,+0.25m3, +0.25m,, m,,= 2.25
= My =T+ 0 Mg+ 0.1mg+ 0.1 my, my = 1.25
Mz =1+ 0.1my+ 0 mz+ 0.1 my, mz,= 1.25
My =1+ 0. 1My + 0. Tmg i+ 0 my, My = 1.25

The expected number of stages between visits
to a state #i ("mean recurrence time") is the
reciprocal of the steady-state probability of
state #i:

mii=% Vi
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