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One of the systems of a communication satellite consists of four
unreliable components each of which are necessary for successful
operation of the satellite—the probabilities that a component
survives the planned lifetime of the satellite (i.e., the reliabilities)

are shown below:

Ry =70% R,=85% Rz=75%
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Ry =70% F.=085% Rz=75% R4=58%

— i

Assuming that component failures are independent,
Reliability of system
= P{components 1 through 4 survive}
= P{#1 survives} X P{#2 survives} x P{#3 survives} X P{#4 survives}

=0.70 x0.85x0.75 x 0.88 = 39.27%

This is an unacceptably low system reliability, and so redundant

units of one or more components will be used in the design.
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The reliability of a component may be

increased by including redundant units!

Reliability of component #1 This assumes what is referred
= P{at least one unit survives}
= 1 — P{both units fail}

=1-0.30x0.30 =91%

to as “hot standby’, i.e., a
standby unit may fail even

before it is put into service!
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By using redundant units of each component, the system
reliability can be dramatically increased—for example:

Rs=15%

Ry =70%

R,=85%

{ System }=[1 —(0.30)2} X[l _(0.15)2} X[l _(0.25)2} 0.5

Reliability
=0.91x0.9775 %0.984375 x0.88 =77.0551%
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Reliability (%) vs. # redundant units

Component 1 unit 2 units 3 units
1 70 91 97.3
2 80 97.75 99.6625
3 75 93.75 98.4375
4 88 98.56 99.8272

We will assume that no more than three units of any component

will be included!
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The problem faced by the designer is to maximize the system
reliability, subject to a restriction on the total weight of the
system.
|Component‘ 1 ‘ 2 ‘ 3 ‘ 4 |
|Weight(kg)‘ 1 ‘ 2 ‘ 1 ‘ 3 |

Total weight must not exceed 12 kg.
(Total weight of one unit of each component is 7 kg, leaving 5

kg for redundant units.)
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Dynamic Programming Model

Stage: n component type
Decision: x, # of units of component n included in system

State: s, slack weight, i.e., # kg available
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We impose a sequential decision-making structure on the

problem by supposing that we consider the components one

at a time, deciding how many units to include based upon the

available weight capacity.

Component Component

Component

— #4 #3

#2

Component
#1

Arbitrarily we will use a “backward” order in what follows!

That is, imagine that we first consider how many units of

component #4 are to be included when we begin with 12 kg

of available capacity, while component #1 is the last to be

considered.
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Optimal Value Function
fa(s,) = maximum reliability of the subsystem consisting of
devices n, n-1, ... 1, if s, kg of available capacity

remains to be allocated.

Component Component Component Component
— #4 #3 #2 #1 —>

Recursive definition of function

£ (sn) = maxi{num {(1 -py ) Xf (sn _ann}

Isx, < /
Wﬂ

1 if 5,20

0 otherwise

fo(so)={

Optimal Redundancy 4/1/2002 page 10 of 26

APL function definition

Component #1: reliability = 70%, weight = 1 kg.

¥ oZeF N;T
[11] 2}
[2] A Optimal redundancy to maximlze reliabkillity
[31] A
[4] 11f N=0
[5] z={lpsipl),-BIG
[&6] else
[7] A Recursive definition of optimal walue funection
[e] zeMaximize {{(psipl)e.-{1-RIN])=»x]x{F N-1)[TRANSITION S°,-W[N]x*x
[a] end1f
Y
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Stage 1
s\ xt 1 2 3 | Maxi mum
1 | 0.7000 99.9999 99.9999] 0.7000
2 | 0.7000 0.9100 99.9999] 0.9100
3 | 0.7000 0.9100 0.9730] 0.9730
etc.
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Component #2: reliability = 80%, weight = 2 kg.

Component #3: reliability = 75%, weight = 1 kg.

Stage 2 Stage 3
s\ xt 1 2 3 | Maxi mum s\ xt 1 2 3 | Maximm
3 | 0.5600 99.9999 99.9999] 0.5600 4 | 0.4200 99.9999 99.9999| 0.4200
4 | 0.7280 99.9999 99.9999] 0.7280 5 | 0.5460 0.5250 99.9999] 0.5460
5 | 0.7784 0.6720 99.9999| 0.7784 6 | 0.5838 0.6825 0.5513] 0.6825
6 | 0.7784 0.8736 99.9999| 0.8736 7 | 0.6552 0.7298 0.7166] 0.7298
7 | 0.7784 0.9341 0.6944| 0.9341 8 | 0.7006 0.8190 0.7662] 0.8190
8 | 0.7784 0.9341 0.9027] 0.9341 9 | 0.7006 0.8757 0.8600] 0.8757
etc. etc.
For example, suppose that we have 6 kg of capacity remaining, i.e., so = 6, and
we choose to include 2 units of component #2. Then we obtain 97.75%
reliability of subsystem #2 and arrive at stage 1 (component #1) with 6-2x2=2
kg of capacity remaining, so that we can achieve 91% reliability ( f, (2)=O,91 ) in
subsystem #1. Hence the subsystem of components 1&2 will have reliability
0.9775%0.91 = 0.8736
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Component #4: reliability = 88%, weight = 3 kg. Summary of computations
Stage 4 Stage 2
Stage 4 | | | |
. H Cu t ti ti Next Cu t ti ti Next
s\ x 1 __ 2 ___ 3 | Muximm Siate Docision Value  State Siate Docision Value  Stare
7 | 0.3696 99.9999 99.9999| 0.3696 cap 7 1 units 0.3696 cap 4 cap 3 1 units 0.5600 cap 1
8 | 0. 4805 99. 9999 99. ggggl 0. 4805 cap 8 1 units 0.4805 cap 5 cap 4 1 units 0.7280 cap 2
— — 9 1 it 0. 6006 6 5 1 it 0.7784 3
9 | 0.6006799.9999799.9999| 0. 6006 cap 10 1 units 0.6422 cap 7 cap 6 2 units 0.8736 cap 2
10 | 0. 6422 0.4140 99.9999| 0. 6422 cap 11 1 units 0.7207 cap 8 cap 7 2 units 0.9341 cap 3
11 | 0. 7207 0. 5381799 9999| 0. 7207 cap 12 1 units 0.7706 cap 9 cap 8 2 units 0.9341 cap 4
12 | 0.7706 0.6727 99.9999] 0.7706
Stage 3 Stage 1
Current Optimal Optinmal Next Current Optinmal Optinal Next
: - State Deci si Val St at State Deci si Val St at
Only the lqst row of.thts table need bg computed to find the capa4e 1 ﬁ'msl 2“ 0?4280 capa3e Capale 1 E'ms; ;’” o.a7ggo capaOe
optimal reliability with 12 kg of capacity! cap 5 1 units 0.5460 cap 4 cap 2 2 units 0.9100 cap O
cap 6 2 units 0.6825 cap 4 cap 3 3 units 0.9730 cap O
cap 7 2 units 0.7298 cap 5 cap 4 3 units 0.9730 cap 1
cap 8 2 units 0.8190 cap 6 cap 5 3 units 0.9730 cap 2
cap 9 2 units 0.8757 cap 7 cap 6 3 units 0.9730 cap 3
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The maximum reliability, then, given a 12 kg weight * What reduction in reliability would occur if the

restriction, is f,(12) = 77.06% weight restriction were 11 kg rather than 12?
By a “forward pass” through the tables, we can
determine the optimal design: * What is the optimal design with a weight restriction
of 11 kg?
stage state deci si on
4 cap 12 1 wunits
3 cap 9 2 wunits
2 cap 7 2 wunits
1 cap 3 3 units
0 cap O

That is, the optimal design includes 1 of component #4, 2
each of components #2 & #3, and 3 of component # 1.
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B0 ' Integer Programming Model
9% | ‘ . . . . .
< 70 — Define binary decision variables:
Eé “ T X, = 1 if n units of component i are included
& W;Sght in the system
1 : Xin = 0 otherwise
30? g g 10 11 15 Notation:
welght Component
i Ri1 Ri2 Ris
1 0.70 0.91 0.973
2 0.80 0.9775 | 0.996625
3 0.75 0.9375 | 0.984375
4 0.88 0.9856 | 0.998272
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Objective:

In order to linearize the objective, we will instead

maximize the logarithm of the reliability:

Maximize 24123: (ln R, ) X,

i=l n=l

4 3
subject to D> (Wn)x, <w,,
i=l n=l
S X, =1 OF 1234
n=1
X, 0{0,} O i&n
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Component In Ri1 In Ri2 In Riz
i
1 ~0.35667| 0.094311| 0.02737
2 ~0.22314| 0.040822| 0.008032
3 - 0.28768| 0.064539| 0.01575
4 ~0.12783| 0.014505| 0.001729
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LINGO model:

SETS:
COWONENT /| AB CD:
VAEI GHT;
UNITS / 1..3/;
LOG( COMPONENT, UNI TS): LNR,  X;
ENDSETS

DATA:
VEIGHT =121 3
WAX = 12;
LNR = -0.35667 -0.094311
-0.22314 -0.040822
-0.28768 -0.064539

-0.027371
-0.0080322
-0.015748

-0.12783 -0.014505 -0.0017295; ! LNR is log of reliability;

ENDDATA

MAX = @UM COVPONENT(I): @UM UNITS(N): LNR(1, N)*X(1,N))) ;
@UM COMPONENT(1): @UM UNITS(N): VI GHT(1)*N<X(1, N))) <= WWWAX;

@OR ( COMPONENT( ) :

@UM (UNETS(N):~ X(1, N)) =1; )
@OR ( COVPONENT( 1)

@OR (UINITS(N):  @IN (X(1,N) ) )
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LINDO model:

MAX - .35667 X( A
- .22314 X( B,
- .28768 X( C,
- .12783 X( D,

SUBJECT TO

2] X( A 1) +2 X
+6 X( B, 3) +
+6 X( D 2) +

3] X( A 1) + XA

4] X( B, 1) + X( B,

5] X( C 1) + X( C

6] X( D 1) + X( D,

END

I NTE 12

1) - .094311 X( A,
1) - .040822 X( B,
1) - .064539 X( C,
1) - .014505 X( D,

A 2) +3 X A 3)
X(C 1) +2
9 X( D, 3) <= 12

2) + X( A 3)
2) + X( B, 3)
2) + X C 3)
2) + X( D, 3)

- .027371 X( A 3)
- .0080322 X( B, 3)
- .015748 X( C, 3)
- .0017295 X( D, 3)

+2X( B 1) +4 X B 2

1
1
1
1

X( C 2 +3 X C 3) +3X D 1)
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Optimal Solution:

oj ecti ve val ue: - 0.2605620

Vari abl e Val ue Reduced Cost

X( A 3) 1. 000000 0.2737100E-01
X( B, 2) 1. 000000 0. 4082200E-01
X( C 2) 1. 000000 0. 6453900E- 01
X( D, 1) 1. 000000 0.1278300
Note that exp{ — 0.260562P= 0.77062

which is in agreement with the dynamic programming

solution.
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