Dynam	nic Pr	ogran	ming	There is a co mach These seque	ine to another nce-dependent	between operations setup costs are:	duct from one
Process Plan Selec Considering Seque	tion nce-Depend	lent Setup Co	osts		A A B B C C C	B 2 C 1 A 2 C 1 A 2 B 1	
© D.L.Bricker Dept of Mechanical & Industrial En The University of Iowa	gineering			The total cos 3xL + (2 + 4>	t of the sequen xL) + (5xL) + (1	cce A→B→B→C is, fi + 4×L)	or example,
DP: Process Planning	11/25/02		page 1	DP: Process Planning		11/25/02	page 3
Manufacture of a pr each of which m on any of <i>three a</i> The operation cost/	roduct requin ay be perform alternative m unit for the	res <i>four</i> opera med achines. various mach	tions, nines are:	Let $C_{s,x}^c =$ $C_{n,x}^p = p$	DYNAMIC Pro cost of <i>change</i> nachine <i>x</i> processing cost	DGRAMMING MOD <i>Ing</i> part from machi	EL ne s to ion <i>n</i> on
Operation	Operation	Operation	Operation	n,x - 1	nachine x		
A 3 B 2	4 4 4	3 3 5	6 5	L = l	ot size	(n=1, 2, N)	
C 4	1	6	4	State:	= machine of	n which previous of	peration $(n-1)$
				State.			Jerauon (<i>n−1)</i>
				D - • •	was perfo		
				Decision:	$\alpha_n = \text{machine o}$	n which operation	n is to be
					performed	l	

Optimal value function

 $f_n(s_n) =$ minimum cost of completing operations n, n+1, ...Nif the part is currently loaded on machine s_n .

$$f_{n}(s) = \min \left\{ C_{s,x}^{c} + L \times C_{s,x}^{p} + f_{n+1}(x) \right\}$$
$$f_{N}(s) = 0$$

Optimal					
Returns	&	Decisions			

Current	Optimal	Optimal	Next	Current	Optimal	Optimal
State	Decision	Value	State	State	Decision	Value
A	A	15	A	A	A	8
В	В	14	В	В	A	10
С	В	15	В		В	
	С		С	С	A	10
					С	
~~~~~~	~~~~~~	~~~~~~~	~~~~~	~~~~~~	~~~~~~~~	~~~~~~~
Stage 2				Stage 4		
Current	Optimal	Optimal	Next	Current	Optimal	Optimal
State	Decision	Value	State	State	Decision	Value
A	A	12	A	A	C	5
	С		С	В	В	5
В	С	12	С		С	
С	C	11	С	С	С	4
						~~~~~~~

Setting lot size L = 1, we obtain:

Stage 4	4				Stage 2
s \	x: 1	2	3	Min	$s \setminus x: 1 2 3 \mid Min$
1	6	7	5	5	1 12 16 12 12
2	8	5	5	5	2 14 14 12 12
3	8	б	4	4	3 14 15 11 11
Stage 3	3				Stage 1
s \	x: 1	2	3	Min	$s \setminus x: 1 2 3 \mid Min$
1	8	12	11	8	1 15 16 16 15
	-				
2	10	10	11	10	2 17 14 16 14 (

11/25/02

The optimal beginning state is #2 (machine B).

The minimum cost is achieved by initially loading the parts on machine **B**, resulting in total cost of \$14. The optimal sequence: $\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{A} \rightarrow \mathbf{C}$

11/25/02

page 7

page 8

Optimal	Soluti	on No. 1	
stage	state	decision	
1	В	В	
2	В	С	
3	С	A	
4	A	С	$B \rightarrow C \rightarrow A \rightarrow C$
5	С		

Optimal	Soluti	on No. 2	
stage	state	decision	
1	В	В	
2	В	С	
3	С	С	
4	С	С	$B \rightarrow C \rightarrow C \rightarrow C$
5	С		

DP: Process Planning

DP: Process Planning

DP: Process Planning

page 5

What is the optimal plan if the lotsize is L=2?

Operation #4:					
	Α	В	С	min	
Α					
В					
С					

Oper	ation	#2:		
	Α	В	С	min
Α				
В				
С				

Operation #3:

	Α	В	С	min
Α				
В				
С				

Operation #1:					
	Α	В	С	min	
Α					
В					
С					

DP: Process Planning	11/25/02	page 9