Dynamic Programming

Process Plan Selection
Considering Sequence-Dependent Setup Costs

© D.L.Bricker

Dept of Mechanical \& Industrial Engineering
The University of Iow

Manufacture of a product requires four operations, each of which may be performed on any of three alternative machines.

The operation cost/unit for the various machines are:

	Operation	Operation	Operation	Operation
Machine	1	2	3	4
A	3	4	3	6
B	2	4	5	5
C	4	1	6	4

There is a cost associated with moving the product from one machine to another between operations.

These sequence-dependent setup costs are:

From	To	Setup Cost
A	B	2
A	C	1
B	A	2
B	C	1
C	A	2
C	B	1

The total cost of the sequence $A \rightarrow B \rightarrow B \rightarrow C$ is, for example, $3 \times L+(2+4 \times L)+(5 x L)+(1+4 \times L)$

都

DYnAMIC PROGRAMMING MODEL

Let $\quad C_{s, x}^{c}=$ cost of changing part from machine s to machine x
$C_{n, x}^{p}=$ processing cost per unit for operation n on machine x
$L=$ lot size

Stages: $\quad n=$ operation $(n=1,2, \ldots N)$
State: $\quad s_{n}=$ machine on which previous operation $(n-1)$ was performed

Decision: $\quad x_{n}=$ machine on which operation n is to be performed

Optimal value function

$f_{n}\left(s_{n}\right)=$ minimum cost of completingoperations $n, n+1, \ldots N$ if the part is currently loaded on machine s_{n}.
$f_{n}(s)=\min \left\{C_{s, x}^{c}+L \times C_{s, x}^{p}+f_{n+1}(x)\right\}$
$f_{N}(s)=0$

Optimal

Returns \& Decisions

Stage 1				Stage 3			
Current	Optimal	Optimal	Next	Current	Optimal	Optimal	Next
State	Decision	Value	State	State	Decision	Value	State
A	A	15	A	A	A	8	A
B	B	14	B	B	A	10	A
c	B	15	B		B		B
	c		c	c	A	10	A
					c		c

Stage 2
Current Optimal Optimal Next

State	Decision	Value	State
A	A	12	A
B	C		C
C	C	12	C
C	11	C	

Stage 4

Setting lot size $L=1$, we obtain:

Stage					
4---					
s	$\mathrm{x}:$	1	2	3	Min
1	6	7	5	5	
2	8	5	5	5	
3	8	6	4	4	

Stage 2--- s							$\mathrm{x}:$	1	2	3	Min
1	12	16	12	12							
2	14	14	12	12							
3	14	15	11	11							

Stage 3---

Stage				
1-ー s $x:$ 1 2	3	Min		
1	15	16	16	15
2	17	14	16	14
3	17	15	15	15

The optimal beginning state is \#2 (machine B).

The minimum cost is achieved by initially loading the parts on machine \boldsymbol{B}, resulting in total cost of $\$ 14$.
The optimal sequence: $\mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{A} \rightarrow \mathbf{C}$

Optimal Solution No. 1 stage state decision			
1	B	B	
2	B	C	
3	C	A	
4	A	C	$\mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{C}$
5	C		

Optimal		Solution No. 2	
stage	state	decision	
1	B	B	
2	B	C	
3	C	C	
4	C	C	B $\rightarrow \mathbf{C} \rightarrow \mathbf{C}$
5	C		

What is the optimal plan if the lotsize is $L=2$?
Operation \# 4:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{m i n}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \#3:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{m i n}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \# 2:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\boldsymbol{\operatorname { m i n }}$
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

Operation \# 1.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\min
\mathbf{A}				
\mathbf{B}				
\mathbf{C}				

