

Suppose that a new car costs \$10,000, and that the annual operating cost & resale value are as follows:

Age of car (yrs)	Resale Value	Operating cost in previous year
1	\$7000	\$300
2 3	\$6000 \$4000	\$500 \$800
4	\$3000	\$1200
5	\$2000 \$1000	\$1600 \$2200

Starting with a new car, what is the replacement policy that minimizes the net cost of owning and operating a car for the next six years?

(Assuming that

- •initial car has already been paid for
- •no car is needed at the end of the sixth year)

Optimal Machine Replacement Problem

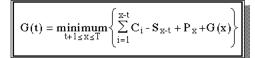
Purchase price of new machine = 10000

Age	Maintenance cost prev.yr	Salvage value
1	300	7000
2	500	6000
3	800	4000
4	1200	3000
5	1600	2000
6	2200	1000

©Dennis Bricker, U. of Iowa, 1997

- G(t) = minimum total costincurred from time t until the end of the planning horizon, if a new machine has just been purchased.
- $X^*(t) = optimal replacement time$ for a machine which has been purchased at the beginning of period t.

©Dennis Bricker, U. of Iowa, 1997



where

 P_{+} = purchase price of a new machine at time t $(P_{\tau} = 0)$

 C_i = cost of operation & maintenance of a machine in its ith year

 S_{1} = salvage value of machine of age j $\langle \neg \, \Box \rangle$

ອນenins Bricker, ປ. of Iowa, 1997

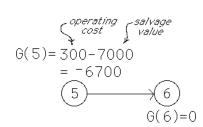
$$G(t) = \underset{t+1 \le x \le T}{\text{minimum}} \left\langle \sum_{i=1}^{x-t} C_i - S_{x-t} + P_x + G(x) \right\rangle$$

Starting point: New car at the beginning of the first year

What's the least-cost way to get from node 0 to node 62

Termination: No car at the end

of the sixth year



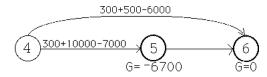
G[6]= 0

Computation of G(5) = Minimum total cost until end of time period 6, given a new machine at time 5 $\,$

X*[5]= 6 = optimal replacement time G[5]= 76700

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997



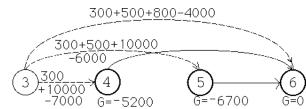
 $G(4) = minimum \{300 + 10000 - 7000 + G(5), 300 + 500 - 6000 + G(6)\}$ $= minimum \{-3400, -5200\} = -5200$

©Dennis Bricker, U. of Iowa, 1997

Computation of G[4] = Minimum total cost until end of time period 6, given a new machine at time 4

 $X \star [4] = 6 = \text{optimal replacement time } G[4] = -5200$

©Dennis Bricker, U. of Iowa, 1997



 $G(3)= minimum{300+10000-7000+G(4), 300+500+10000-6000+G(5), 300+500+800-4000+G(6)}$

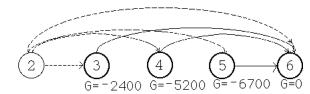
= minimum{ -1900, -1900, -2400 } = -2400

©Dennis Bricker, U. of Iowa, 1997

Computation of G(3) = Minimum total cost until end of time period 6, given a new machine at time 3

X*[3]=6 = optimal replacement time G[3]= -2400

©Dennis Bricker, U. of Iowa, 1997



G(2)= minimum{3300+G(3), 4800+G(4), 7600+G(5), -200+G(6)} = minimum{ 900, -400, 900, -200} = -400

 $\Diamond \Diamond$

Computation of G[2] = Minimum total cost until end of time period 6, given a new machine at time 2

X*[2]=4 = optimal replacement time G[2]= $^{-4}00$

Stage 1

Computation of G[1] = Minimum total cost until end of time period 6, given a new machine at time 1

x C C+G 2 3300 2900 3 4800 2400 4 7600 2400 5 9800 3100 6 2400 2400

X*[1]=3 = optimal replacement time G[1]= 2400

©Dennis Bricker, U. of Iowa, 1997

Computation of G[0] = Minimum total cost until end of time period 6, given a new machine at time 0 $\,$

<u>x</u> <u>C</u> <u>C+G</u>
1 3300 5700
2 4800 4400 51
3 7600 5200
4 9800 4600
5 12400 5700
6 5600 5600

 $X \star [0] = 2 = optimal replacement time G[0] = 4400$

©Dennis Bricker, U. of Iowa, 1997

Optimal replacement plan

Summary

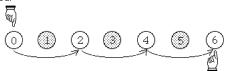
t	х	G
0 1 2 3 4 5 6	2346660	4400.00 2400.00 -400.00 -2400.00 -5200.00 -6700.00 0.00

Your expected total cost for 6 time periods will be 4400.00

The optimal plan is to replace the initial car after two years, i.e., X*(0)=2.

Then, since X*(2)=4, you should replace at the end of the fourth year.

©Dennis Bricker, U. of Iowa, 1997



Termination: No car at the end of the sixth year

©Dennis Bricker, U. of Iowa, 1997