OPTIMAL LOT SIZE by Dynamic Programming

- A company requires *n* units of a customized electronic component, which is ordered from a supplier.
- When a lot is received, it is immediately inspected, and the company pays an amount *c* for each unit passing inspection.
- The rejection rate is q = 1 p.
- Any units in surplus of the number required yields a salvage value *v* per unit.
- ◆ If insufficient acceptable units are received, another lot must be ordered. There is a fixed cost *K* for reordering.

Dennis Bricker, Dept. of Industrial Engineering, University of Iowa dennis-bricker@uiowa.edu

DP: Optimal Lotsize

page 1

©D.Bricker, U. of Iowa, 2001

The smallest lotsize for which the expected yield of acceptable units is equal to at least **n** is, of course, $\left\lceil \frac{n}{p} \right\rceil$, but the optimal lot size will, in general, be larger in order to avoid the reordering cost **K**.

Example data

n = **20** units **q** = rejection rate = **15%**

- *c* = cost per acceptable unit = **\$20**
- v = salvage value for surplus units = **\$5**
- **K** = reordering cost = **\$500**

DP: Optimal Lotsize

We will assume that the outcome of each inspection is independent and identically distributed, so that the acceptable yield of a lot of size N would have binomial distribution with parameters (**N**, **p**). Hence we would expect that a lot size of $\left\lceil \frac{20}{0.85} \right\rceil = \left\lceil 23.5294 \right\rceil = 24$ would yield the required **20** units.

page 2

However, there would be approximately

$$\sum_{j=0}^{19} p_x(j) = 28.66\%$$

probability that a deficit would remain so that reordering would be required, where

$$p_{x}(j) = \binom{x}{j} p^{j} (1-p)^{x-j}$$

is the probability that j units of a lot of size x will pass inspection.

©D.Bricker, U. of Iowa, 2001

Binomial Distribution Table

P {j units accepted | x units ordered}

Х	∖j O	1	2	3	4	5	6	7	8	
1	15000	85000								
2	02250	25500	72250							
3	00338	05738	32513	61412						
4	00051	01148	09754	36848	52201					
5	00008	00215	02438	13818	39150	44371				
6	00001	00039	00549	04145	17618	39933	37715			
7	00000	00007	00115	01088	06166	20965	39601	32058		
8	00000	00001	00023	00261	01850	08386	23760	38469	27249	

For example, if 6 units are ordered, the probability that exactly 4 units are accepted is 0.17618.

For the original n required units and each possible deficit, what are the lot sizes which will minimize the total expected cost (minus salvage value received for surplus units)?

Dynamic Programming Model

Define an optimal value function

f(n) = minimum expected cost of acquiring *n* acceptable units. $x^*(n)$ = optimal lot size when n acceptable units are required. We wish to determine the values of f(20) and $x^*(20)$.

page 6

DP: Optimal Lotsize

page 5

©D.Bricker, U. of Iowa, 2001

Recursive Definition of the Optimal Value Function

$$f(n) = \min_{x \ge n} \left\{ c \sum_{j=0}^{x} j p_x(j) - v \sum_{j=n+1}^{x} (j-n) p_x(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_x(j) \right\}$$

where

 $c\sum_{j=0}^{x} jp_x(j)$ is the expected cost of acceptable units in a lot of size x $v\sum_{j=n+1}^{x} (j-n)p_x(j)$ is the expected salvage value of surplus units $\sum_{j=n+1}^{n-1} [K + f(n-i)]n(i)$ is the expected cost of reordering

 $\sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_x(j) \text{ is the expected cost of reordering}$

Note that *f*(*n*) appears on both left and right of the "="!

Denote the optimal x by \hat{x} .

DP: Optimal Lotsize

$$f(n) - p_{\hat{x}}(0) f(n) = c \sum_{j=0}^{\hat{x}} j p_{\hat{x}}(j) - v \sum_{j=n+1}^{\hat{x}} (j-n) p_{\hat{x}}(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_{\hat{x}}(j) + K p_{\hat{x}}(0)$$

Solving for f(n) yields the recursion

$$\min_{x \ge n} \left\{ \frac{c \sum_{j=0}^{x} j p_{x}(j) - v \sum_{j=n+1}^{x} (j-n) p_{x}(j) + \sum_{j=0}^{n-1} \left[K + f(n-j) \right] p_{x}(j) + K p_{x}(0)}{1 - p_{x}(0)} \right\}$$

©D.Bricker, U. of Iowa, 2001

Computation of f(1):

<u>x</u>	purchase	salvage	reorder	Total
1	17	0.00000	75.00000	108.2353
2	34	-3.61250	11.25000	42.5959
3	51	7.76688	1.68750	45.0727
4	68	-12.00253	0.25312	56.2791
5	85	-16.25038	0.03796	68.7928
6	102	20.50006	0.00569	81.5066
7	119	24.75001	0.00085	94.2510
8	136	29.00000	0.00012	107.0002

f(1) = 42.5959 with lotsize = 2

Example Calculation: Suppose the lotsize is x=3, so that the probability

distribution of the number of acceptable pieces is

х	j= 0	1	2	3	
3	00338	05738	32513	61412	

$$p_{x}(j) = \binom{x}{j} p^{j} (1-p)^{x-j}$$

DP: Optimal Lotsize	page 9	©D.Bricker, U. of Iowa, 2001	DP: Optin	nal Lotsize		page 10	©D.Bricker, U. of Iowa, 200	
Then the expected nu	rchase price is c^{x} in (i)	=	Computation of f(2):					
Then the expected purchase price is $c \sum_{j=1}^{j} j_{j}$			x purchase s		salvage	reorder	Total	
20[1(0.05738) = 20[0.057]	+2(0.32513) +3(0.6141	12)] /1 = \$20[2 55] = \$51	2	34	0.00000	1.39708E2	177.7068	
The expected salvas	ve value is $v \sum_{i=1}^{x} (i-n) n$	(i) =	3	51 68	7.06244	6.01219E0	66.9837	
\$5 [1×0 20512]	$\sum_{j=n+1}^{n} (j - n) p$	x(J)	5	85 102	-11.26152 -15.50205	1.11698E0 1.99821E ⁻ 1	74.8612 86.6988	
= \$5[1.5533	8] = \$7.77	(3123 + 1.22823)	8	119 136	-19.75036 -24.00006	3.48142E_2 5.94828E ⁻ 3	99.2846 112.0059	
The expected reorde	er cost is $\sum_{j=0}^{n-1} \left[K + f(n-j) \right]$	$]p_{x}(j) + Kp_{x}(0) =$	f(2)	= 66.9837	with lotsi	ze = 4		

Summing and dividing by $1 - p_x(0) = 0.996625$ yields

\$500×0.00338 = **\$1.6875**

$$\frac{51 - 7.77 + 1.6875}{0.996625} =$$
\$45.07

Computation of f(3):

<u>×</u>	purchase	salvage	reorder	Total
4 5 7 8 9 10 11 12	68 85 102 119 136 153 170 187 204	-2.61003 -6.39458 -10.53148 -14.75646 -19.00127 -23.25024 -27.50005 -31.75001 -36.00000	5.52821E1 1.34027E1 2.95984E0 6.13824E ⁻¹ 1.21666E ⁻¹ 2.33059E ⁻² 4.34687E ⁻³ 7.93567E ⁻⁴ 1.42349E ⁻⁴	120.7332 92.0151 94.4294 104.8575 117.1204 129.7731 142.5043 155.2508 168.0001

f(3) = 92.0151 with lotsize = 5

DP: Optimal Lotsize		page 13		©D.Bricker, U. of Iowa, 2001 DP: Optimal Lotsize			page 14	©D.Bricker, U. of Iowa, 2001	
Comp	utation of	f(4):				# Required	Lotsize	Expected yield	Expected cost
						Ō	0	0.00	0.0000
х	purchase	salvage	reorder	Total		1	2	1.70	42.5959
						2	4	3.40	66.9837
5	85	-2.21853	8.35848E1	166.379		3	5	4.25	92.0151
6	102	-5.76817	2.39300E1	120.163		4	7	5.95	115.2886
7	119	-9.81698	6.10536E0	115.289		5	8	6.80	137.6817
8	136	-14.01554	1.43755E0	123.422		6	9	7.65	161.7710
9	153	-18.25341	3.19049E 1	135.066		7	11	9.35	183.2215
10	170	22.50072	6.76673E ⁻ 2	147.567		8	12	10.20	205.0304
11	187	26.75015	1.38449E ⁻ 2	160.264		9	13	11.05	227.9728
12	204	-31.00003	2.75127E ⁻ 3	173.003		10	15	12.75	249.7202
13	221	-35.25001	5.33687E ⁻ 4	185.751		11	16	13.60	270.8886
14	238	-39.50000	1.01441E ⁴	198.500		12	17	14.45	292.8776
15	255	43.75000	1.89498E ⁻ 5	211.250		13	19	16.15	315.5066
16	272	48.00000	3.48733E ⁻ 6	224.000		14	20	17.00	336.1120
						15	21	17.85	357.3386
f(4) = 115.28	9 with lots	ize = 7			16	22	18.70	379.2370
						17	24	20.40	401.0926
etc.						18	25	21.25	421.7098
						19	26	22.10	442.8532
						20	27	22.95	464.5606

<mark>Summary</mark>

If 20 usable parts are required, a lot of size 27 should be ordered. The expected yield is 22.95 (nearly 23, i.e., 3 more than required), and the expected cost is \$464.56.

If, for example, the yield is 23, the cost would be $20 \times 23 = 460$, and the extra 3 parts could be salvaged for $5\times 3 = 15$, a net cost of 445 (about 19.56 less than the expected cost).

If the yield were only 18, however, the cost of this lot would be $20 \times 18 = 360$, and two additional parts are needed, so that another lot of size 4 should be ordered. (This would cost an additional \$500 for re-ordering, plus the cost of the acceptable parts, etc.

page 17

©D.Bricker, U. of Iowa, 2001