

**Disjoint Path
Problem**

**an application of
Lagrangian
Relaxation**

This Hypercard stack was prepared by:
 Dennis L. Bricker,
 Dept. of Industrial Engineering,
 University of Iowa,
 Iowa City, Iowa 52242
 e-mail: dennis-bricker@uiowa.edu

 author

Application

A set of products is to be scheduled on a machine.
 (Example: scheduling steel to be rolled (producing varying grades, widths, thicknesses, etc.) in a hot strip mill.)

For some pairs (i, j) of products, no major setup is required if product j immediately follows product i .

We wish to sequence the products so as to minimize the number of major setups required.

©Dennis Bricker, U. of Iowa, 1998

Represent the products by nodes in a network, with arc from node i to node j if node j requires no major setup when it follows node i .

Example

The nodes on a path through the network correspond to a sequence of products which can be produced with a single major setup.

Any two such paths should be *disjoint*, i.e., should share no common products.

©Dennis Bricker, U. of Iowa, 1998

The Disjoint Path Problem:

Find the minimum number of disjoint paths which span all the nodes of a directed graph.

Example

A feasible solution

©Dennis Bricker, U. of Iowa, 1998

PROBLEM STATEMENT:

Given a directed graph (digraph) $G = (N, A)$

where $N = \{1, 2, \dots, n\}$ = set of nodes

A = set of arcs ($A \subseteq N \times N$)

Find the minimum number of paths such that every node $i \in N$ lies on one (and only one) path

©Dennis Bricker, U. of Iowa, 1998

Example:

©Dennis Bricker, U. of Iowa, 1998

The optimal solution:

(2 paths)

©Dennis Bricker, U. of Iowa, 1998

Mathematical Programming Model

Define the variables

$$x_{ij} = \begin{cases} 1 & \text{if arc } (i, j) \text{ is included on a path} \\ 0 & \text{otherwise} \end{cases}$$

Clearly $x_{ij} = 1$ for at most one j for each i and $x_{ij} = 1$ for at most one i for each j

That is, at most one arc enters node j , and at most one arc leaves node i

©Dennis Bricker, U. of Iowa, 1998

Thus, we have the constraints

$$\sum_{j=1}^n X_{ij} \leq 1 \quad \text{for each } i \in N$$

$$\sum_{i=0}^n X_{ij} \leq 1 \quad \text{for each } j \in N$$

We must add the constraint that the edges of the subgraph indicated by X form a "forest", i.e., a collection of trees.

(A tree is a subgraph containing no cycle.)

However, the above constraints permit circuits,

e.g.,

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

In order to facilitate defining the objective function (which is to be the number of paths) in terms of X ,

Define a new node 0

Let $G' = (N', A')$ where

$$N' = N \cup \{0\}$$

$$A' = A \cup \{(0,1), (0,2), \dots (0,n)\}$$

$$\text{Let } X_{0i} = \begin{cases} 1 & \text{if node } i \text{ is the beginning of a path} \\ 0 & \text{otherwise} \end{cases}$$

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

The Optimization Problem:

$$\text{Minimize } \sum_{j=1}^n X_{0j}$$

subject to

$$X \in T = \text{set of all spanning trees of } G'$$

$$\sum_{j=1}^n X_{ij} \leq 1 \quad \text{for each } i \in N$$

Note that no inequality limits out-degree of node 0

$$\sum_{i=0}^n X_{ij} = 1 \quad \text{for each } j \in N$$

$$X_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A'$$

©Dennis Bricker, U. of Iowa, 1998

$$\text{Minimize } \sum_{j=1}^n X_{0j}$$

subject to

$$X \in T = \text{set of all spanning trees of } G'$$

$$\sum_{j=1}^n X_{ij} \leq 1 \quad \text{for each } i \in N$$

$$\sum_{i=0}^n X_{ij} = 1 \quad \text{for each } j \in N$$

$$X_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A'$$

These are essentially constraints of an assignment problem!

This problem appears to be a good candidate for Lagrangian Relaxation because of its structure:

- If we relax the spanning tree constraint, we obtain a relaxation which is an assignment problem
- If we relax the assignment constraints, we obtain a relaxation which is a minimum spanning tree problem

However, because the spanning tree constraint is not easily written as a system of explicit linear constraints, relaxing them is problematic!

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Variable "splitting"

For each variable X_{ij} of the problem, define a variable Y_{ij}
 Require that X be a spanning tree,
 that Y be a feasible assignment,
 and that $X_{ij} = Y_{ij}$ for each i, j

$$\begin{aligned} \text{Minimize } & \alpha \sum_{j=1}^n X_{0j} + (1 - \alpha) \sum_{j=1}^n Y_{0j} \\ \text{subject to } & \sum_{j=1}^n Y_{ij} \leq 1 \quad \text{for each } i \in N \\ & X \in \mathcal{T} \\ & \sum_{i=0}^n Y_{ij} = 1 \quad \text{for each } j \in N \\ & Y_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A' \\ & X_{ij} = Y_{ij} \quad \text{for each } (i,j) \in A' \end{aligned}$$

for some specified weight α which distributes the cost between the two sets of variables ($0 \leq \alpha \leq 1$)

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

$$\begin{aligned} \text{Minimize } & \alpha \sum_{j=1}^n X_{0j} + (1 - \alpha) \sum_{j=1}^n Y_{0j} \\ \text{subject to } & \sum_{j=1}^n Y_{ij} \leq 1 \quad \text{for each } i \in N \\ & X \in \mathcal{T} \\ & \sum_{i=0}^n Y_{ij} = 1 \quad \text{for each } j \in N \\ & Y_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A \\ & X_{ij} = Y_{ij} \quad \text{for each } (i,j) \in A' \end{aligned}$$

We now relax these constraints!

The Lagrangian Relaxation:

$$\begin{aligned} \text{Minimize } & \alpha \sum_{j=1}^n X_{0j} + (1 - \alpha) \sum_{j=1}^n Y_{0j} + \sum_{i=0}^n \sum_{j=1}^n \lambda_{ij} (X_{ij} - Y_{ij}) \\ \text{subject to } & \sum_{j=1}^n Y_{ij} \leq 1 \quad \text{for each } i \in N \\ & X \in \mathcal{T} \\ & \sum_{i=0}^n Y_{ij} = 1 \quad \text{for each } j \in N \\ & Y_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A' \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

The Lagrangian Relaxation:

$$\begin{aligned} \text{Minimize } & \sum_{j=1}^n (\alpha + \lambda_{0j}) X_{0j} + \sum_{i=1}^n \sum_{j=1}^n \lambda_{ij} X_{ij} \\ & + \sum_{j=1}^n (1 - \alpha - \lambda_{0j}) Y_{0j} - \sum_{i=1}^n \sum_{j=1}^n \lambda_{ij} Y_{ij} \\ \text{subject to } & \sum_{j=1}^n Y_{ij} \leq 1 \quad \text{for each } i \in N \\ & X \in \mathcal{T} \\ & \sum_{i=0}^n Y_{ij} = 1 \quad \text{for each } j \in N \\ & Y_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A' \end{aligned}$$

The Lagrangian Relaxation separates into two subproblems:

Minimum Spanning Tree Problem:

$$\begin{aligned} \Phi_X(\lambda) = \text{minimum } & \sum_{j=1}^n (\alpha + \lambda_{0j}) X_{0j} + \sum_{i=1}^n \sum_{j=1}^n \lambda_{ij} X_{ij} \\ \text{subject to } & X \in \mathcal{T} \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

Assignment Problem

$$\begin{aligned} \Phi_Y(\lambda) = \text{minimum } & \sum_{j=1}^n (1 - \alpha - \lambda_{0j}) Y_{0j} - \sum_{i=1}^n \sum_{j=1}^n \lambda_{ij} Y_{ij} \\ \text{subject to } & \sum_{j=1}^n Y_{ij} \leq 1 \quad \text{for each } i \in N \\ & \sum_{i=0}^n Y_{ij} = 1 \quad \text{for each } j \in N \\ & Y_{ij} \in \{0,1\} \quad \text{for each } (i,j) \in A' \end{aligned}$$

For any matrix λ of Lagrangian multipliers, the sum of the optimal values of the two subproblems provides a lower bound on the optimal value of the original problem:

$$\Phi(\lambda) = \Phi_X(\lambda) + \Phi_Y(\lambda) \leq Z^*$$

The Lagrangian Dual:

$$\Phi^* = \text{Maximum } \Phi(\lambda)$$

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

The search for the optimal dual variables (λ) can be performed by *subgradient optimization*

The subgradient of the dual objective, $\Phi(\lambda)$ is the matrix $\Delta = \{\delta_{ij}\}$ where $\delta_{ij} = (X_{ij} - Y_{ij})$

This is the direction in which to change λ

$$\lambda_{\text{new}} = \lambda_{\text{old}} + \tau \frac{(Z^* - \Phi(\lambda_{\text{old}}))}{\|\Delta\|^2} \Delta$$

$\tau \in (0,2]$
is a stepsize parameter

It may be that the optimal values of X and Y for the subproblems are never feasible paths.

For this reason, it is worthwhile to seek a feasible solution (which provides an upper bound) by means of a heuristic.

Two heuristic algorithms have been designed:

- a "greedy" algorithm
- a random-search algorithm

©Dennis Bricker, U. of Iowa, 1998

The "greedy" algorithm proceeds as follows:

Initially, the path set P is empty ($P \leftarrow \emptyset$)

- If all nodes lie on a path, stop. Else, begin a new path by selecting the node i^* which minimizes λ_{0i} .
Let $P \leftarrow P \cup \{(0, i^*)\}$
- If $\{(i, j) : j \text{ does not lie on a path}\}$ is empty, go to step (a). Otherwise, let $j^* \leftarrow \arg\min(\lambda_{ij} : j \text{ does not lie on a path})$
- Let $P \leftarrow P \cup \{(i^*, j^*)\}$ and $i^* \leftarrow j^*$.
Return to step (b).

©Dennis Bricker, U. of Iowa, 1998

The random search algorithm finds several trial solutions, each constructed as in the greedy algorithm except:

In step (b), the choice of the next node to add to the path is random, with probability depending upon the current value of the Lagrange multipliers (λ_{ij}). *(Probabilities vary inversely as the multipliers, so that the choice tends to be "greedy".)*

©Dennis Bricker, U. of Iowa, 1998

Randomly-generated problem (N=9)

©Dennis Bricker, U. of Iowa, 1998

The optimal solution:

©Dennis Bricker, U. of Iowa, 1998

Results of Lagrangian dual search
(Spanning tree & assignment subproblems)

©Dennis Bricker, U. of Iowa, 1998

Other relaxations are possible:

#2

Relax, in addition to those relaxed in the approach just presented, the constraint on the in-degree of each node:

$$\sum_{j=0}^n Y_{ij} = 1 \text{ for each } j \in N$$

The subproblem in Y is then a simple GUB (generalized upper bound, or "multiple choice") problem.

©Dennis Bricker, U. of Iowa, 1998

©Dennis Bricker, U. of Iowa, 1998

#3

Replace the constraint that X is a tree with the stronger constraint that X is an "arborescence" (a directed tree with in-degrees of the nodes ≤ 1 .) Then relax as in #2.

(The algorithm to compute a minimum spanning arborescence is $O(n^4)$. In practice, execution time for the APL code is about 15 times that for the spanning tree problem, for a 20-node problem.)

Using relaxation #2 (spanning tree & GUB problems)
(Using greedy heuristic)

©Dennis Bricker, U. of Iowa, 1998

Using relaxation #3 (spanning arborescence & GUB)
(Using greedy heuristic)

©Dennis Bricker, U. of Iowa, 1998

Another randomly-generated problem, with $N=20$

©Dennis Bricker, U. of Iowa, 1998

The
Adjacency
Matrix:

1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0
10	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
18	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

An optimal solution:

(The "dummy" node 0 & arcs from it are not shown.)

©Dennis Bricker, U. of Iowa, 1998

Relaxation #2 (spanning tree & GUB subproblems)
(Using random search heuristic with 5 trials)

©Dennis Bricker, U. of Iowa, 1998

Relaxation #3 (spanning arborescence & GUB subproblems)
(Using random search heuristic with 5 trials)

This limited computational experience suggests that the additional effort required to find the minimum spanning arborescence is not effective.