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Represent the products by nodes in a netwaork,
with arc from node i to node j if node j requires
no major setup when if follows node 1.

The nodes on a path
through the network
correspond Lo a sequence
of products which can be
produced with a single
major setup.

Any two such paths should be &rsse/né, i.e., should
share no common products.
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PROBLEM STATEMEMT

Given a directed graph (digraph) G = (N,A)
where N =1{1,2,..n} =set of nodes

A =setofarcs (ACSMNxN)

Find the minimum number of paths such that
every node €M lies an one (and only one) path
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The optimal solution:

(2 paths) ote——s?
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Application

A set of products is to be scheduled on a machine,
(Example: scheduling steel to be rolled (producing
varying grades, widths, thicknesses, etc.) in a hot

strip mill.)
For some pairs (1,j) of products, no major setup

is required if product j immediately follows product i,
Wwe wish to sequence the products so as to minimize
the number of major setups required.
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The Disjoint Path Problem:

Find the minimum number of disjoint paths
which span all the nodes of a directed graph.

| A feasible solution E

(3 paths!)
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Example:
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Mathematical Programming Mode

Define the variables

Xijz{

Clearly X =
and ><1j

1 if arc (i,j)is included on a path
O otherwise

1 for at most one j for each i
1 for at most one i for each j

Tzl 15, 58 masE one S0 enters node
s FE oSt one e fesvas moge 7
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Disjoint Path

Thus, we have the constraints

Xj=1 foreachieN

M

n
2 Xy= 1 foreachjeN
=1

However, the above constraints permit circuits,
e.q.,
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In order to facilitate defining the objective function
(which is to be the number of paths)in terms of X,

Cefine a new node O
Let G'=(N', A) where
N = Nu {0}
A= AU{(0,1),(0,2), ... (0,0}

Let + _ |1 ifnodeiis the beginning of a path
o 0 otherwise

EDennis Bricker, U. of lowa, 1998

node O The optimal
solution
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We must add the constraint that the edges
of the subgraph indicated by X form a "forest”,
i.e., acollection of trees.

(d free is 7 subgrant containing no cvclet
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the new version of the
problem is a spanning
treel

The optimal solution to
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n
Minimize > X

=1
subject to

X £ 7 =setof all spanning trees of G'

Fhase sre assaniisiiy
canslrainls af &
FRSFHTIENT froii ey

n
2 Xy= 1 foreachieN
j=1

n

> Xy=1 foreachjeN
=0

Xy e {0,1% foreach (i,jle A’
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The Optimization Problem:

n
Minimize > X
i=1

subject to
X £ 7 =setof all spanning trees of G'
n . .
. Nota ihst no insgusiity
_Z Xij =1 foreachicN Fimils aut-gagres af
J;l Hede 12
> Xy=1 foreachjeN

=]

i=l

Xy e {0,1% foreach (i,jle A’
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This problem appears to be a good candidate
for Lagrangian Relaxation because of its
structure:
* [f we relax the spanning tree constraint, we
obtain a relaxation which is an assignment
problem

* [f we relax the assignment constraints, we
obtain a relaxation which is a minimum
spanning tree problem

However, becavuse the spanning tree consiramnt
18 not easiiyv written as a system of explicst
finear constralfnls, relaxing them s proffematic!
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‘ariable "splitting

For each variable X;; of the problem, define a
variable Yy
Require that X be a spanning tree,
that ¥ be a feasible assignment,
and that =Y, for each i & j
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n n
Minimize o0 > X +(1-0) 2 Yy
i=1 i=1

subject to n
2 Yy=1 foreachieN
Xe T j=1
n
> Y;=1 foreach jeN
i=0
Yy € {01} foreach(i,jleA

Fe now relax these
constraimis!

Xj =Yy foreach (i,jle A’
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The Lagrangian Relaxation

n
Minimize > (¢ + LodXg+
i=1
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n n
Minimize o0 > X +(1-0) 2 Yy
i=1 i=1

subject to
2 Yy=1 foreachieN
Xe T =1
n
> Y;=1 foreach jeN
i=0
Yy € {0,1} foreach (i,jle A'

Xj =Yy foreach (i,jle A’

for some specified weight « which distributes
the cost between the two sets of variables (O<a<1]
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The Lagrangian Relaxation:

Z Z lij (Xij' Yij)

n n
Minimize o 3 Xy +(1-0) 2 Yy +
i=1 i=1 i=0j=1

subject to
Xe 7

for each ieN

=

YijS 1

=

Y;=1 foreach jeN

=]

Yy € {0,1}  for each (i,j)€ A’
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The Lagrangian Relaxation separates into
two subproblems:

Minimum Spanning Tree Problem:

subject to

Xe 7T

n n n
+ 22—y Yy- 2 XA Yy
i=1 i=1j=1
subject to
2 Yy=1 foreachieN
Xe T =1
n
> Y;=1 foreach jeN
i=0
Yy € {0,1} foreach (i,jle A'
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Assignment Problem

n n n
P 4L)= minimum '21(1 =0 =AY~ '21 '21 Ay Yy
i= i=1j=
subject to n .
2 Yy=1 foreachieN
JT-{l
> Y;=1 foreach jeN
i=0

Yy € {0,1}  for each (i,j)€ A’
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For any matrix A of Lagrangian multipliers.
the sum of the optimal values of the two
subproblems provides a lower bound on the
optimal walue of the original problem:

D) = o M)+ D) ¢ 7¥

The Lagrangian Dual

@®" = Maximum & (L)
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The search for the optimal dual variables ( A4 )
can be performed by subgradient aplimization

The subgradient of the dual objective, ®()
is the matrix  A={8;] where 8&; =(X;-Yy

This is the direction in which to change A
A=A

o 2-00) ,

J Jal’

T £10,2]
i & slensize
el ar

The "greedy"” algorithm proceeds as follows:

Initially, the path set P isempty (P« &)

{a) If all nodes lie on a path, stop. Else, beginanew path by
selecting the node i* which minimizes &,
Let P« Pw {(0,i*)}

(b} If {(i,j): j does not lie on a path} is empty, go to step (a).
Otherwise, let j¥<—argmin{ li]. i does not lie on a path}

{c) Let P Puw {(i%]j*)}
Return to step (b,

and %« ¥

EDennis Bricker, U. of lowa, 1998

Randomly-generated problem (N=9)
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Results of Lagrangian dual search
{Spanning tree & assignment subproblems)

4

Upper & Lower bounds vs iteration #

3 farmmnsied
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It may be that the optimal values of X and Y
for the subproblems are never feasible paths.

For this reason, it is worthwhile to seek a
feasible solution (which provides an upper
bound) by means of a heuristic.

Two heuristic algorithms have been designed:
* a "greedy” algorithm
* arandom-search algorithm
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The random search algorithm finds several
trial solutions, each constructed as in the
greedy algorithm except:

In step (b)), the choice of the next node to add to

the path is random, with probability depending

upon the current value of the Lagrange multipliers
(A0, (Frobabiliiies vary inversels a5 the
mitinfiers, so that the chioice lends fo be greed )
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The optimal solution:
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her refaxaiions are possifife

Felax, in addition to those relaxed in the
approach just presented, the constraint on
the in-degree of each node:

n
> Y;=1 foreach jeN
i=0

The subproblem in Y is then a simple GUB
(generalized upper bound, or "multiple choice”)
problem.
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node O

7/23/98

A feasible solution is a directed
spanning tree which is known as

an "arborescence™ the number of
arcs entering any node is at most 1
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Using relaxation #2 (spanning tree & GUB problems)

(L groadls houristicd

4
3
2—1
T4 Upper & Lower bounds vs iteration #
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Another randomly-generated problem, with N=20
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An optimal solution:

\C— 15 {szingleton}

oA 18 17 19 20
C[a 12 41112 14 13 10 Qiﬁj

{The "l noda
& wos o i are ol
Showid
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Replace the constraint that X is a tree with
the stronger constraint that X is an
"arborescence” (a directed tree with in-
degrees of the nodes ¢ 1.] Then relax as
in #2.

{Tia Shaoritfnrr L0 COmppte & ITRTIILIT: SOSWIng
arborescence /5 (nti i practice, execiidion Lime

For e A5 code im sbowl 15 finres el for e shaning
Lree problem Por g Si-noge problen
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Using relaxation #3 (spanning arborescence & GUB)
(L groadls houristicd

4
3 Upper & Lower bounds vs iteration #
2
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Relaxation #2 (spanning tree & GUB subproblems)
(LASTG rEmoTy SESCH FeuTS i with 5 trialsd

Upper & Lower bounds vs iteration #

SR EGETY
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Relaxation #3 (spanning arborescence & GUB subproblems) This limited computational experience suggests
(Lisiing randor Searc fieuristic with 5 trials/ that the additional effort required to find the
minimum spanning arborescence is not effective.

Upper & Lower bounds vs iteration #
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