Cyclic Staffing Problems

Example

The Kleen City Police Department is preparing a shift schedule for

the policemen & policewomen.

The 24-hour day is divided into six 4-hour periods, with the first period beginning at 2:00 am.

Each person works two consecutive 4-hour periods, i.e., 8 consecutive hours.

©Dennis Bricker, U. of Iowa, 1997

There are six possible shifts that a person may work. Let shift #i be the shift starting in period #i and including period #i+1.

Define decision variables

 $X_i = #$ of persons assigned to shift #i (i.e., working in periods i & i+1)

©Dennis Bricker, U. of Iowa, 1997

Minimize X₁+X₂+X₃+X₄+X₅+X₆ subject to X_1 $+ X_6 \ge 22 = R_1$ $X_1 + X_2$ ≥ 55= R₂ ≥ 88= R₃ $X_2 + X_3$ X3+X4 ≥110= R₄ $X_4 + X_5 \ge 44 = R_5$ $X_5 + X_6 \ge 33 = R_6$

> $X_i \ge 0$ & integer ©Dennis Bricker, U. of Iowa, 1997

Cyclic Staffing problems are characterized by

- n = # periods per cycle
- m = # periods per shift

 C_i = cost per worker for shift i

 R_i = number of workers reg'd in period j

- For example, for n=7,m=5, each worker's shift consists of 5 consecutive periods (days) per cycle (week).
- Staffing requirements, as well as the cost per worker, are given for each period during the cvcle.
- The problem is to determine the number of workers to be assigned to each shift.

©Dennis Bricker, U. of Iowa, 1997

The requirements in each period (which are the same for each day of the week) are: \checkmark

	,	<i>F</i>	^K
period #	time of day	requirement	۰
1	02-06	22	times
2	06-10	55	accon to 24-
3	10-14	88	to 24- clocki
4	14-18	110	
5	18-22	44	
6	22-02	33	

s ane rding t-hour

We wish a daily plan which employs the least number of persons. $C_i = 1$

©Dennis Bricker, U. of Iowa,

X₁+X₂+X₃+X₄+X₅+X₆

Minimize

staffing

requirements

nonnegativity

constraints

Constraints

of person working in period #i (i.e., shifts #i and #i-1) must be at least the number required.

For example, persons who are assigned to shifts 1&6 work in period #1, and so

> $X_1 + X_6 \ge 22 = R_1$ ©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

There appears to be some similarity to a node-arc incidence matrix of a network, namely the elements consist only of +1,-1, and zero!

The transpose of the matrix would appear even more similar.... many rows have only two nonzero elements (+1 & -1)!

□ 1	0	0	0	-1	1	
0	1	0	0	0	0	
-1	0	1	0	0	0	
0	-1	0	1	0	0	
0	0	-1	0	1	0	
0	0	0	-1	0	1	
1	0	0	0	0	0	
-1	1	0	0	0	0	
0	-1	1	0	0	0	
0	0	-1	1	0	0	
0	0	0	-1	1	0	
Lο	0	0	0	-1	1	

In fact, if not for the "1" in the upper-right corner, the matrix transpose would be a node-arc incidence matrix!

						\sim	
Γ	1	0	0	0	-1	\odot	
	0	1	0	0	0	ō	
	-1	0	1	0	0	0	
	0	-1	0	1	0	0	
	0	0	-1	0	1	0	
	0	0	0	-1	0	1	
l	1	0	0	0	0	0	
н		<u> </u>	~			~	
	-1	1	Õ	0	0	õ	
	-1 0	1 -1		0		-	
	-1 0 0	1 -1 0	0		0	0	
		1 -1	0		0 0	0	
	0	1 -1 0	0 1 -1		0 0	0 0 0	

©Dennis Bricker, U. of Iowa, 1997

Suppose that Y_6 is temporarily fixed... the dual LP then becomes

Max $(22 - Y_6)\pi_1 + 55\pi_2 + 88\pi_3 + 110\pi_4 + 44\pi_5 + (33Y_6)\pi_6 - Y_6\mu_6$ subject to

	0	1	0	-1	0	0	0	1	-1	0	0	0	$\begin{bmatrix} \pi \\ \mu \end{bmatrix} =$	0	
	0	0	1	0	-1	0	0	0	1	-1	0	0	$ \mu =$	0	
	0	0	0	1	0	-1	0	0	0	1	-1	0		0	
l	-1	0	0	0	1	0	0	0	0	0	1	-1		[0]	
												6			

©Dennis Bricker, U. of Iowa, 1997

For fixed values of Y_6 , we would need to solve the network problem:

Minimize Y₆ subject to 0 Û. -1 0 22 1 The problem 0 0 1 0 0 0 55 0 Ω -1 1 Ω 0 88 can be viewed Y₁ 0 -1 0 1 0 110 0 as finding the 0 0 -1 0 44 0 1 \mathbf{Y}_2 minimum Y₆ 33 0 0 0 0 -1 1 Y_3 Υ₆ ≥ such that the 0 1 0 0 0 0 0 Y_4 constraints are -1 1 0 0 0 0 0 Y_5 0 0 Ω - 1 feasible: 1 \cap 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0] 1 0 0 0 0 -1 (Y unrestricted in sign, but integer!)

The coefficient matrix is a node-arc incidence matrix if a redundant constraint is added, namely the negative of the sum of the five equations:

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Max $(22 - Y_6)\pi_1 + 55\pi_2 + 88\pi_3$

 $+110\pi_4+44\pi_5+(33Y_6)\pi_6-Y_6\mu_6$

If there exists any feasible flow having a positive objective value, the LP is *unbounded* (which implies that the primal LP is *infeasible* !)

Our example problem (Kleen City Police Dept.) does have "properly compatible circular 1's in columns":

[1	0	0	0	0	1	
1	1	0	0	0	0	
0	1	1	0	0	0	
0	0	1	1	0	0	
0	0	0	1	1	0	
Lo	0	0	0	1	1_	

X₁ X₂ X₃

lunch

break

,1.1...

01.

...10^K

... 1 1 ...

... 1 1 ...

...0 1....

...00....

$$X_{1} = Y_{1}$$

$$X_{2} = Y_{2} - Y_{1}$$

$$X_{3} = Y_{3} - Y_{2}$$

$$X_{4} = Y_{4} - Y_{3}$$
etc.

If the matrix for a cyclic staffing problem has

properly compatible circular 1's in columns,

then the variable transformation

lunch

break

Properly compatible, but not

circular 1's in columns

results in a problem whose dual, for fixed integer values of Y_6 , is a network flow problem (with integer solution).

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

For the special case $C_i = 1$ for all i=1,...n,

i.e., objective is to minimize the total number of workers,

the problem may be solved by making the transformation to Y_1, Y_2, \ldots, Y_n , solving the continuous LP relaxation, and rounding each of the non-integer Y_i 's up to the next integer!

Reference	
Bartholdi, John J., III, Orlin, James B., a	nd
Ratliff, Donald, "Cyclic Scheduling v Integer Programs with Circular Ones"	27777
Operations Research, Vol. 28, No. 5	'
(SeptOct. 1980), pp. 1074-1085.	