

Cutting-Plane Techniques: From a non-integer optimal solution of the LP relaxation, a constraint is derived and added to the LP, such that the LP solution is eliminated, but NO integer feasible solution is eliminated.

☞ Gomory's Fractional Cut

Dual All-Integer Cut

©Dennis Bricker, U. of Iowa, 1997

Gomory's Fractional Cut

Suppose that the optimal LP tableau includes the row

$$\sum_{i=1}^{n} \alpha_{ij} x_{j} = \beta_{i}$$

Suppose that \mathbf{x}_k is basic in this row, so that $x_k + \sum_{i \neq R} \alpha_{ij} x_j = \beta_i$

where B = index set of basic variables.

©Dennis Bricker, U. of Iowa, 1997

$$x_k + \sum_{j \notin B} \alpha_{ij} x_j = \beta_i$$

may be written

$$x_k + \sum_{j \notin B} ([\alpha_{ij}] + f_{ij}) x_j = [\beta_i] + f_i$$

$$\implies \boxed{ \begin{array}{c} x_k - \left[\beta_i\right] + \sum\limits_{j \notin B} \left[\alpha_{ij}\right] \, x_j = & f_i - \sum\limits_{j \notin B} & f_{ij} x_j \end{array} }$$

Notation

 $[\alpha_{ij}]$ = integer part of α_{ij} f_{ij} = fractional part of $= \alpha_{ij} - [\alpha_{ij}]$

Examples

$$\begin{bmatrix} \frac{5}{4} \end{bmatrix} = 1 \qquad \begin{bmatrix} \frac{3}{4} \end{bmatrix} = 0$$
$$\begin{bmatrix} -\frac{3}{4} \end{bmatrix} = -1$$
Note that [a] \(\) a

 $[\beta_i]$ = integer part of β_i

fi = fractional part of = $\beta_i - \lfloor \beta_i \rfloor$

©Dennis Bricker, U. of Iowa, 1997

A NECESSARY condition for $x_k \& x_i \ (j \notin B)$ to be integer is that the right-hand-side of

$$x_k - \left[\beta_i\right] + \sum_{j \notin B} \left[\alpha_{ij}\right] \ x_j = \quad \mathbf{f}_i - \sum_{j \notin B} \quad \mathbf{f}_{ij} x_j$$

is integer, i.e.,

$$\begin{array}{ll} f_i \text{ - } \sum\limits_{j \notin \mathbb{B}} \ f_{ij} x_j \ \in \left\{\cdots \text{ -2, -1, 0, 1, 2, 3,} \cdots\right\} \end{array}$$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

However, $f_i < 1 \quad \& \quad f_{ij}x_j \geq 0$

imply that
$$f_i - \sum_{j \notin B} \, f_{ij} x_j < 1$$

and, indeed, $-f_i$ - $\sum\limits_{i \not \in B} f_{ij} x_j$ — must be no greater

than the largest integer < 1, i.e.,

$$f_i - \sum_{j \notin B} f_{ij} x_j \leq 0$$

Gomory's Fractional Cut

Gomory's Fractional Cut

$$-\sum_{j\notin B} \mathbf{f}_{ij} \mathbf{x}_j + \mathbf{S} = -\mathbf{f}_i$$

This constraint MUST be satisfied by all INTEGER feasible solutions of the source row!

However, it is NOT satisfied by the current LP solution if $f_i \neq 0!$

(Since $x_i=0$ for $i \notin B$)

©Dennis Bricker, U. of Iowa, 1997

Gomory's Fractional Cut

$$\sum_{j \notin B} f_{ij} x_j \ge f_i$$

©Dennis Bricker, U. of Iowa, 1997

Example

$$\frac{1}{4}x_3 + \frac{2}{3}x_6 + \frac{3}{4}x_7 \ge \frac{1}{5}$$

If x_3 , x_6 , and x_7 are nonbasic in the current LP optimal tableau, then these variables are ZERO in the basic solution, and the above constraint is violated by the current LP optimal solution!

©Dennis Bricker, U. of Iowa, 1997

Gomory's Cutting-Plane Algorithm

Step 0 Initialization

> Solve the LP relaxation of the problem Optimality test

Is the LP solution integer? If so, stop.

Step 2

Step 1

Choose a source row (with non-integer right-hand-side) and generate a cut. Add cut to bottom of tableau

©Dennis Bricker, U. of Iowa, 1997

Step 3

Pivot

Re-optimize the LP, using the dual simplex algorithm. Return to step 1.

All variables (including slack/surplus variables) must be integer.

If original inequality constraint has non-integer coefficients or right-hand-side, multiply both sides by an appropriate positive constant, e.g.

$$\frac{2}{5}x_1 + \frac{4}{3}x_2 \le \frac{5}{2}$$

$$\Rightarrow 12 x_1 + 40 x_2 \le 75$$
multiply both sides by 30

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Choice of Source Row

Cuts may be generated using as source row:

- any row in optimal LP tableau which has a non-integer right-hand-side
- · a multiple of any row in the LP tableau
- a linear combination of rows from the LP tableau

Choice of Source Row

While the strength of the cut varies, depending upon one's choice, no rule is known which will guarantee choosing the row yielding the strongest cut.

Heuristic rules

Choose, as source row, that which has

- $1) \quad \underset{i}{max} \ \left\{ f_{i} \right\}$
- $2) \quad \max_{i} \left\{ f_{i} \sum_{j \notin B} f_{ij} \right\}$
- 3) min $\left\{\frac{1}{2} f_i\right\}$

©Dennis Bricker, U. of Iowa, 1997

Max $z=2x_1 + x_2$ s.t. $x_1 + x_2 \le 5$ $-x_1 + x_2 \le 0$ $6x_1 + 2x_2 \le 21$ $x_1, x_2 \ge 0$ & integer

©Dennis Bricker, U. of Iowa, 1997

EXAMPLE

Introduce slack variables to convert to equations:

©Dennis Bricker, U. of Iowa, 1997

EXAMPLE

©Dennis Bricker, U. of Iowa, 1997

substitute

ANY of these rows could serve as the SOURCE row for a cut:

source row $x_{1} - \frac{1}{2}x_{3} + \frac{1}{4}x_{5} = \frac{11}{4} \implies \frac{1}{2}x_{3} + \frac{1}{4}x_{5} \ge \frac{3}{4}$ $x_{2} + \frac{3}{2}x_{3} - \frac{1}{4}x_{5} = \frac{0}{4} \implies \frac{1}{2}x_{3} + \frac{3}{4}x_{5} \ge \frac{1}{4}$ $-2x_{3} + x_{4} + \frac{1}{2}x_{5} = \frac{1}{2} \implies \frac{1}{2}x_{5} \ge \frac{1}{2}$

©Dennis Bricker, U. of Iowa, 1997

of Cuts in X_1X_2 -plane $\begin{cases} x_3 = 5 - x_1 - x_2 \\ x_5 = 21 - 6x_1 - 2x_2 \end{cases}$ $\frac{1}{2}x_3 + \frac{1}{4}x_5 \ge \frac{3}{4} \quad \Rightarrow \quad 2x_1 + x_2 \le 7$ $\frac{1}{2}x_3 + \frac{3}{4}x_5 \ge \frac{1}{4} \quad \Rightarrow \quad 5x_1 + 2x_2 \le 18$ $\frac{1}{2}x_5 \ge \frac{1}{2} \quad \Rightarrow \quad 6x_1 + 3x_2 \le 20$ $Click \ mouse \ on \ cut \ to \ see \ effect \ effet \ effect \ effet \ eff$

Graphical Representation

 $2x_1 + x_2 \le 7$

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Dropping Cuts from Tableau

Each cut adds a new row & a new column (slack variable) to the tableau...

If ALL cuts are kept until the algorithm terminates, the tableau becomes so large as to be "unwieldy"!

When a cut is no longer "useful", it would be advantageous to be able to delete that cut.

3

2

©Dennis Bricker, U. of Iowa, 1997

Dropping Cuts from Tableau

When a cut is added to the tableau, & the dual simplex pivot removes its slack variable from the basis, the cut is a "tight" constraint, i.e., its slack variable is zero.

If a cut's slack variable re-enters the basis at a later iteration, then the cut has become inactive and may then be dropped from the tableau.

©Dennis Bricker, U. of Iowa, 1997

Max
$$z = 2x_1 + x_2$$

s.t. $x_1 + x_2 \le 5$
 $-x_1 + x_2 \le 0$

 $6 x_1 + 2 x_2 \le 21$

 $x_1, x_2 \ge 0$ & integer

Initial Optimal LP tableau

Current LP Tableau

z 1 2	3 4	5	В
1 0 0	-0.5 0	-0.25	-7.75
0 0 1	1.5 0	-0.25	2.25
0 0 0	-2 1	0.5	0.5
0 1 0	-0.5 0	0.25	2.75

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts:

The rows having non-integer right-hand-side are 2 3 4

Source row is # 2

i	2	3	5	6	rhs
Source row	1 0	-1.5 -0.5	-0.25 -0.75	0	2.25 -0.25

(X[6] (= slack variable for new cut) is basic but < 0)

The cut which is added is (in terms of original variables):

1 2 b 5 2 ≤ 18

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Current LP Tableau

z	1	2	3	4	5	6	В	
1 0 0 0	0 0 0 1 0	0 1 0 0 0	1.5 -2 -0.5	0 1 0	-0.25 -0.25 0.5 0.25 -0.75	0	-7.75 2.25 0.5 2.75 -0.25	← cut

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6

Tableau is now primal infeasible

(but dual feasible!)

Minimum ratio is in column 5.

Solving current LP

Potential pivot columns: X[3 5]

Performing dual simplex pivot in row 5

0.5	-0.75
1	0.333
	1

which is selected as pivot column

Current LP Tableau

Current LP Tableau

z 1	2	3	4	5	6	В
0 0 0 0 0 1	1	-0.333 1.67 -2.33 -0.667 0.667	0 1 0	0 0	-0.333 0.667	-7.67 2.33 0.333 2.67 0.333

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

The rows having non-integer right-hand-side are 2 3 4 5

Source row is # 2

i	2	3	6	7	rhs
Source row	1	1.67	-0.333	0	2.33
Cut:		-0.667	-0.667	1	-0.333

(X[7] (= slack variable for new cut) is basic but < 0)

The cut which is added is (in terms of original variables):

1	2		b	
4	2	≤	15	

Current LP Tableau

I	z	1 2	3	4	5	6	7	В	
	1 0 0 0 0	0 1 0 0 1 0 0 0	1.67 -2.33 -0.667 0.667	0 1 0 0	0 0 0 1	-0.333 -0.333 0.667 0.333 -1.33 -0.667		-7.67 2.33 0.333 2.67 0.333 -0.333	← cut

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6 7

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Solving current LP

Performing dual simplex pivot in row 6

Potential pivot columns: X[3 6]

i	3	6
Rel. Profit	-0.333	-0.333
Subs. rate	-0.667	-0.667
Ratio	0.5	0.5

Minimum ratio is in column 3, which is selected as pivot column Current LP Tableau

z	1	2	3	4	5	6	7	В
1 0 0 0 0	0 0 0 1 0	0 1 0 0 0 0	-0.333 1.67 -2.33 -0.667 0.667	001000	0 0 0 0 1 0	-0.333 -0.333 0.667 0.333 -1.33 -0.667	0 0 0 0 0	-7.67 2.33 0.333 2.67 0.333 -0.333
		-	ivot olumn	l				

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Current LP Tableau

z	1	2	3	4	5	6	7	В
1 0 0 0 0	0 0 0 1 0	0 0 0	0	0		-0 -2 3 -1 -2 1	-0.5 2.5 -3.5 -1 1 -1.5	-7.5 1.5 1.5 3 0.5

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6 7

The rows having non-integer right-hand-side are 2 3 6

Source row is # 2

i	2	6	7	8	rhs
Source row Cut:	1 0	-2 0	-2.5 -0.5	0	-1.5 -0.5

(X[8] (= slack variable for new cut) is basic but < 0)

The cut which is added is (in terms of original variables):

1		2		b	
2	?	1	≤	7	
******	****	******		*********	8

Current LP Tableau

Z	1	2	3	4	5	6	7	8	В	
100000	0 0 0 1 0 0	0100000	0 0 0 0 0 0 1 0	0010000	0000100	-0 -2 3 -1 -2 1 0	-0.5 2.5 -3.5 -1 1 -1.5 -0.5	0 0 0 0 0 0	7.55 1.5 1.3 0.5 0.5	<u>≁</u> cut

Variables:

(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6 7 8

Solving current LP

Performing dual simplex pivot in row 7

Potential pivot columns: X[7]

Minimum ratio is in column 7, which is selected as pivot column

Resulting solution is again infeasible (variable < 0)

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Current LP Tableau

z	1	2	3	4	5	6	7	8	В
1 0 0 0 0 0	0 0 0 1 0 0	0100000	0	0 1 0 0	0	-0 -2 3 -1 -2 1 0	-0.5 2.5 -3.5 -1 1 -1.5	000000	-7.5 1.5 1.3 0.5 -0.5

1 2 3 4 5 6 7 -2 3 -2 1 -2 1 0

As a result of the previous dual simplex pivot, the right-hand-side of the new row becomes positive, but further dual simplex pivots are necessary, because negative numbers have appeared in other rows!

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Z	1	2	3	4	5	6	7	8	В
10000	0 0 0 1 0 0	010000	0 0 0 0 0 1	0 0 1 0 0 0	0 0 0 0 1 0	-0 -2 3 -1 -2	000000	-1 -7 -2 -3	-7 -1 5 4 -1 2
0	Ô	Ó	Ō	Ó	Ó	Ō	1	-2	1

Next pivot row should be either row 2 or row 5.

Performing dual simplex pivot in row 2 Potential pivot columns: X[6]

i	6
Rel. Profit Subs. rate	0
Subs. rate Ratio	ő

Minimum ratio is in column 6, which is selected as pivot column

1 2 3 4 5 В -1 -7 -2 -3 -2 00001 1 -2 1 0

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

Current LP Tableau

z 1	2	3	4	5	6	7	8	В
1 0 0 0 0 0 0 1 0 0 0 0 0 0	1.5 0.5		0 1 0 0	0 0 0 0 1 0 0	0 1 0 0 0 0 0	0 0 0 0 0 0 0	-1 -2.5 0.5 0.5 -3 -0.5	7 .555 5 1 .50 .51

Variables:

Mores: (Negative of) objective function value: Z Original structural variables: 1 2 Original slack/surplus variables: 3 4 5 Slack variables for cuts: 6 7 8

The rows having non-integer right-hand-side are 2 3 4 6 From which row do you wish to generate the cut? $\ensuremath{\square}\colon$

The cut which is added is (in terms of original variables):

1 2 1 0 ≤ 3

Source row is # 2

<u>i:</u>	2_	6	8_	9	rhs
Source row:	-0.5	1	-2.5	0	0.5
Cut:	-0.5	0	-0.5	1	-0.5

(X[9] (= slack variable for new cut) is basic but < 0)

Current LP Tableau

2	: 1	2	3	4	5	6	7	8	9	В
10000	1	-0.5 1.5 0.5 -1 0.5	0	10000	0 0 0 1 0	0	0000	-1 -2.5 0.5 0.5 -3 -0.5 -2 -0.5	0 0 0 0 0 0 0	7 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

3 4 5 6 7

9

В

0.5 3.5 3.5 0 1.5

8

-1 0 -2.5 0 0.5 0 0.5 0 -3 0 -0.5 0 -2 0 -0.5 1

Variables:
(Negative of) objective function value: z
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6 7 8 9

z 1

2

0 0 -0.5 0 1.5 0 0.5 0 -1 0 0.5 1 ©Dennis Bricker, U. of Iowa, 1997

Solving current LP

Performing dual simplex pivot in row 8

Potential pivot columns: X[2 8]

i: 2 8

Rel Profit 0 71

Rel. Profit 0 -1 Subs. rate -0.5 -0.5 Ratio 0 2

Minimum ratio is in column 2, which is selected as pivot column

©Dennis Bricker, U. of Iowa, 1997

Current LP Tableau

z	1	2	3	4	5	6	7	8	9	В
1 0 0 0 0 0	0001000	0 0 0 0 0 0 0	000000100	0010000	00000	0 1 0 0 0 0 0 0	000000010	-1 -2 -1 0 -2 -1 -2 1	0 -1 3 1 -2 1 0 -2	-7 1 2 3 1 1 1

All variables are integer!

Variables:

Original structural variables: 2
Original structural variables: 1 2
Original slack/surplus variables: 3 4 5
Slack variables for cuts: 6 7 8 9

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997