Complexity

3/22/00

COMPUTATIONAL
COMPLEXITY

This Hypercard stack was prepared by:
Dennis L. Bricker,

Dept. of Industrial Engineering,
University of lowa,

lowa City, lowa 52242

o e-mail: dbricker@icaen.uiowa.edu

)

author

A measure often used to measure computational
efficiency is computer execution time (cpu time)

... but cpu time depends upon
type of computer
programming language
programmer skills
etc.

@Dennis Bricker, U. of lowa. 1998

One appropriate way to measure the computa-
tional efficiency is to count the number of
elementary operations that are required by
the algorithm, i.e., additions, subtractions,
multiplications, divisions, comparisons, etc.

Specitically, we compulte the "worsi-case”
number of elemeniary operalions, which may
be guite different from the "typical-case”
profifem encoeuntered in actual applicalions.

@Dennis Bricker, U. of lowa. 1998

We say that an algorithm takes time o7/ ZAe
order t(n), where t is a given function, if
there exists a ¢ > 0 and an implementation of
the algorithm capable of solving ewrer)y instance
of the problem of size n in a time bounded by
ct(n).

This is denoted O(t(n)) and is called the
time complexizy of the algorithm.

@Dennis Bricker, U. of lowa. 1998

page 1

How can we compare two different algorithms
for the same problem?

& QUALITY OF SOLUTION

e COMPUTATIONAL EFFICIENCY

T @Dennis Bricker, U. of lowa. 1998

The principle of invariance
says that two different
implementations of the

same algorithm will not differ in computational
efficiency by more than a multiplicative constant

INVARIANCE

If two implementations of the same algorithm, which may differ
in programming language &/or machine used, take ti(n) and
to(n) seconds for an instance of size n, then there exists ac >0
and integer N such that ti(n) £ ¢ tz(n) for all n = N.

@Dennis Bricker, U. of lowa. 1998

A more "macro” view would count the number
of iterations that the algorithm must perform
as a function t(n) of the size n of the problem
if the computational effort per iteration is
stable, e.g., bounded by some function of n.

@Dennis Bricker, U. of lowa. 1998

DY\ NW Dykstra's Shortest Path Algorithm

n = #* nodes

k = current stage (¥permanent labels)

so (n-k) = # of temporary labels.

At stage k (1 <k < n),
3 operations are required for each
temporary label:

1 addition & 1 comparison for updating

1 comparison for selecting label to be
made permanent

Denote:

@Dennis Bricker, U. of lowa. 1998

Complexity 3/22/00 page 2

Total: Polynomial Time Algorithm
t(n) = % 3(n—k):3§ n- 3§: k An algorithm for which the time (equivalently,
k=1 k=1 k=1 the number of operations) is O(p(n)), i.e.,
proportional to p(n), where p(n) is a polynomial
=3n%-3n X%= 35 n? function and n is the "size" of the problem,

is called a po/vnomial/ time algorithm
That is, the algorithm is 0(n?)

@Dennis Bricker, U. of lowa. 1998 @Dennis Bricker, U. of lowa. 1998

Exponential Time Algorithm The importance of the distinction between

polynomial time & exponential time algorithms

{

An algorithm which is not “polynomial time” is evident in the following table, which gives
iS USua”y r‘efel"r‘ed tO as an 8.&",00/?(9/)1,’15/ 1,'1/?78 cpu t]mes for‘ var\]ous pr‘ob]em S]zes
algorithm.

Example: Balas’ implicit enumeration algorithm while the computational burden may not be
In the worst-case scenario, no node of the significantly different for "small” n, as n

enumeration tree is fathomed, and all 2"
completions are exp/icié/y enumerated, so that
the algorithm is 0(2").

increases the differences become dramatic!

@Dennis Bricker, U. of lowa. 1998 @Dennis Bricker, U. of lowa. 1998
Com Size of problem (n)
plexity 10 20 30 40 50 60 CLASSIFICATION
OF PROBLEMS
O(n) | 0.00001| 0.00002 |0.00003 | 0.00004 |0.00005 |0.00006
Sec. SecC. SecC. Sec. Sec. SecC.
0(n?) | 00001 |0.0004 [0.0009 |00016 [0.0025 |0.0036 P = set of all problems which are solvable
sec. sec. sec. sec. sec. sec. by a polynomial time algorithm
0(n3) | 0.001 0.008 0027 0.064 0.125 0216 .
sec. sec. sec. sec. sec. sec. NP = set of all problems which are solvable
0(n?) | O.1sec. | 3.2 sec. 24.82éc 1.7 min. |52 min. |13 min. by a "nondeterministic” polynomial time
0(2") | 0.001 1 sec. 179 min| 127 357 yr| 366 glgomthm . N N .
sec. days centuries i.e., for which a "quess” can be evaluated in
03" | 0059 |58min |65 yr |3855 |2x10 1.3x10 polynomial time (practically all problems
Sec. centuries|centuries cemuries‘ Of‘ inter‘eﬁt)
Suppose computer can perform 10 operations/sec. o
@Lermis onuner, U, wuwa. 1990 @Dennis Bricker, U. of lowa. 1998
. ?
For example, the shortest route problem is P c NP Is P =NP?
a member of the set P. That is, does there exist a

problem for which no poly-
nomial time algorithm can
never be found?

TSE (the traveling salesman
problendis certaini\ in ME

aid 5t s time no one /izs

beern shle (o design & pollnoimia!
Lirrne SlGoritinm 1or iis solution
Conversells, no one 735 been able (o
prave ihe nonexistence of & poll-
nonnisl Lme TSE sigoritfn!

Clearly, P C NP

That is, if a problem can be solved in polynomial
time, then it is certainly possible to evaluate
its objective function for a candidate solution
in polynomial time.

@Dennis Bricker, U. of lowa. 1998 @Dennis Bricker, U. of lowa. 1998

Complexity

Conjecture:

This is still an pen qustion, although most
mathematicians/computer scientists believe
it to be true.
It 225 been proved that

/P =NP |, then 75P & P

that 7s, It° there exist problems rfor which ne
polvnomial time algorithms can be found, the

traveling salesman problem is one such problem.

@Dennis Bricker, U. of lowa. 1998

Caveal.

The fact that no polynomial time algorithm is
known for the TSP does not imply that no such
algorithm exists!

Until the publication in 1979 by L.G. Khachian
of his "Ellipsoid”™ algorithm for linear program-
ming, no polynomial time algorithm was known
for LP!

The Simplex method 1or LR 15 NOT polnomial Lime
n the warst case, in Which everls basic reasible
safution is encouniered!

@Dennis Bricker, U. of lowa. 1998

3/22/00

page 3

A problem is called NP-Complete
if all problems in NP can be
reduced in polynomial time

to that problem.

It is known that the TSP
is NP-complete....

if, therefore, it is ever
shown that TSP = P, then
NP =P.

@Dennis Bricker, U. of lowa. 1998

