

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dennis-bricker@uiowa.edu

Contents

▶ Bernoulli distribution

Binomial distribution

■ Geometric distribution

Pascal (negative binomial) distribution

Bernoulli Random Variable

A random variable X has the Bernoulli distribution with parameter p if

$$P{X = 1} = p$$

 $P{X = 0} = 1-p = q$

e.q., outcome of an experiment can be classified as a "success" (X=1) or a "failure" (X=0)

ď

©D.Bricker, U. of Iowa, 1998

Bernoulli Random Variable

Mean Value

@D.Bricker, U. of Iowa, 1998

$$E(X) = 1 \cdot p + O(1-p) = p$$

Variance

$$Var(X) = E[X-E(X)]^{2}$$
= (1-p)^{2}p + (0-p)^{2}(1-p)
= (1-p) p

Bernoulli Process

The stochastic process $\{X_n; n=1, 2, 3, ...\}$ is a Bernoulli process if

- X₁, X₂, ... are independent
- X_n has the Bernoulli distribution with parameter p for each n.

©D.Bricker, U. of Iowa, 1998

Examples 5 4 1

• At a certain intersection, about 30% of the vehicles turn left. We define $X_n = 1$ if the n^{th} vehicle turns left, and 0 otherwise.

Then $\{X_n; n=1, 2,\}$ is a Bernoulli process with parameter p=0.30.

@D.Bricker. U. of Iowa. 1998

• Diameters of bearings coming off a production line are measured, and those that do not meet specifications are rejected. Let $\,Y_{n}\,$ be the diameter of the nth bearing, a normally-distributed random variable with mean 3 and standard deviation 0.002. Let a=2.994 and b=3.006 be the lower & upper tolerances, so that the bearing is not rejected if $2.994 \le Y_n \le 3.006$. Let $X_n = 1$ if the n^{th} bearing meets specifications. Then $\{X_n; n=1, 2, ...\}$ is a Bernoulli process with parameter 0.9974.

@D.Bricker. U. of Iowa. 1998

Number of successes

Let $\,N_n$ be the number of "successes" of the first n trials of the Bernoulli process $\{X_n\}$,

i.e.,
$$N_n = \sum_{i=1}^n X_i$$

 $\{N_n; n=1, 2,\}$ is a counting process, and N_n has the *binomial distribution:*

$$P\{N_n=k\} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}, k=0,1,2,...n$$

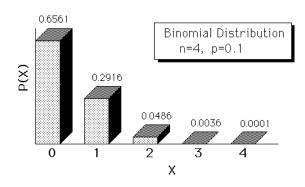
Binomial Distribution

$$P(N_n = k) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}, k=1, 2, ... n$$

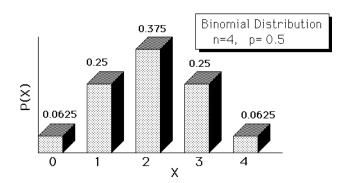
Mean Value
$$E(N_n) = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E(X_i) = np$$

Variance
$$Var(N_n) = Var\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n Var(X_i)$$

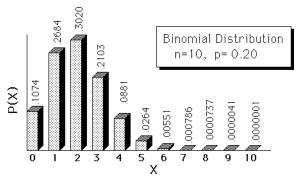
= n (1-p)p



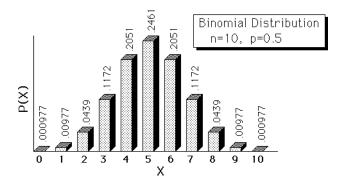
@D.Bricker, U. of Iowa, 1998



@D.Bricker, U. of Iowa, 1998



©D.Bricker, U. of Iowa, 1998



@D.Bricker, U. of Iowa, 1998

has a capacity of 3 autos. 30% of autos arriving at the intersection wish to turn left.

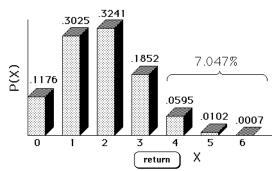
If **6** autos arrive during a red light, what is the probability that the capacity of the left turn lane will be insufficient?

Solution

©D.Bricker, U. of Iowa, 1998

@D.Bricker, U. of Iowa, 1998

P{X of 6 autos turn left}



@D.Bricker, U. of Iowa, 1998

Times of successes

Define a stochastic process $\{T_k \; ; \; k=1,2, \ldots \}$ where T_k is the number of the trial in which the k^{th} success occurs.

In order for $T_1 = n$, it is necessary that

- the first n-1 trials must have been failures
- the nth trial must be a success

Therefore,

$$P{T_1 = n} = (1-p)^{n-1} p$$

geometric distribution

ŝ

©D.Bricker, U. of Iowa, 1998

geometric distribution

$$P\{T_1 = n\} = (1-p)^{n-1} p$$

CDF

$$\begin{split} F_{T_1}(n) &= P\{T_1 \le n\} = 1 - P\{|T_1| > n\} \\ &= 1 - P\{n \text{ failures in first } n \text{ trials} \} \end{split}$$

Mean Value

$$E(T_1) = \frac{1}{p}$$
 "return period"

Variance

$$Var(T_1) = \frac{1-p}{p^2}$$

@D.Bricker, U. of Iowa, 1998

Time of kth success

Let τ_i = additional trials performed after $(i-1)^{th}$ success, in order to achieve ith success

$$T_k = \sum_{i=1}^k \tau_i$$

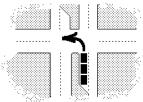
Negative Binomial (Pascal) distribution

Mean Value $E(T_k) = E\left(\sum_{i=1}^k \tau_i\right) = \sum_{i=1}^k E(\tau_i) = kE(T_1) = \frac{k}{p}$ $\text{Variance} \quad \text{Var}(T_k^-) = \text{Var}\bigg(\sum_{i=1}^k \tau_i\bigg) = \sum_{i=1}^k \text{Var}(T_i^-) = \frac{k(1-p)}{p^2}$

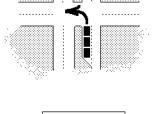
©D.Bricker, U. of Iowa, 1998

Example A left-turn lane at an intersection has a capacity of **3** autos. **30**% of autos arriving at the intersection wish to turn left.

What is the probability distribution of the number of arrivals which cause the capacity of the left-turn lane to be exceeded?



@D.Bricker, U. of Iowa, 1998



Geometric Distribution p = 0.25Expected Value is 4, but smaller values are much more likely!

⊗D.Bricker, U. of Iowa, 1998

The kth success occurs on trial n if & only if

 there are exactly k-1 successes in the first n-1 trials

probability: $\binom{n-1}{k-1} (1-p)^{n-k} p^{k-1}$

 there is a success on the nth trial *probability:* p

$$\therefore P\{T_k = n\} = {n-1 \choose k-1} (1-p)^{n-k} p^k$$

©D.Bricker, U. of Iowa, 1998

Pascal Distribution k=4, p=0.3

Probability that arrival #n causes the overflow of the left-turn lane

$$P\{T_4 = n\} = {n-1 \choose 4-1} (1-p)^{n-4} p^4$$

@D.Bricker. U. of Iowa. 1998

n	P{n}
4	0.00810000
5	0.02268000
6	0.03969000
7	0.05556600
ė	0.06806835
ā	0.07623655
10	0.08004838
11	0.08004838
12	0.07704657
13	0.07191013
14	0.06543822
15	0.05829950
16	0.05101206
17	0.04394886
18	0.03735653
19	0.03137948
20	0.02608419
21	0.02148110
22	0.01754290
23	0.01421898
24	0.01144628
25	0.00915702
26	0.00728400
27	0.00576386
28	0.00453904
29	0.00355861
30	0.00277845

P{n < 30}=99.068%

\$0000 BEEN TO	Pascal Distribution k=4, p=0.3	
$P\{T_4 = n\} = \binom{n-1}{4-1} (1-p)^{n-4} p^4$		
4 5 6 7 8 9 10 15 20	111111 30	

@D.Bricker, U. of Iowa, 1998