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A key concept in Benders' algorithm is that

Consider the problem Minimize cx + dy of partitioning the variables into two sets (x & y)
subject to Ax + By = b and "projecting” the problem onto the y variables.
xz0
yey Define v(y) = dy + min {cx | Ax =z b-By,x = 0}
The variables x are continuous, but the variables o
y are "complicating” in some way... The original problem |[y;. . e viy)
often is clearly seen to be
Y= {y | ¥i € {0)1}} equivalent to: subjectto yeY
i.e., ¥ is binary integer.
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Evaluating v(y) entails solving an LP problem in x, For simplicity, assume that the primal LP
or, by LP duality theory, its dual LP: min {cx |Ax=b-By,x= 0}
v(y) = dy + max {(b—By)Tu | Aluzc uz 0} is always feasible for every choice of Y (e.g.,
x includes "artificial” variables with high costs).

.. . .o
What are the characteristics of this function? Then the dual LP
T T
ma.x{(b—By)u|A ugc,uz 0}

has a bounded feasible region.
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In principle, it is 3 That is, we can evaluate the function v(y) by
’ u

possible to identify {2 :

and enumerate all \
of the extreme
points of the \
dual feasible ul
region.

- ; Byl
viy)=dy + mzluéljnsl%m {(b By) u}

or

_ . i |
v(y) maximum {0{ v+ P }

/ <]

In principle, then, where ai=[B+a, Ejz bla)

one could em/z{ez[e_

the dval [',P obfective So we see that the function v¥/ is the maximum
at each extreme pt,

o of a flarge/ set of linear functions in 3/
(b-By)u

\
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- %5
v(y) is piecewise &y+ B

linear & convex!

For fllustration, consider ¥
¥ = real numbers.
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The runction v may be evalualed by solving erther

min 18x + 8x2 + 20x3
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EXAMPLE Minimize 18x;+ 8x2 + 20x3 + 8y
subjectto 3x;+ x2+ xX3+2y =6
X1+ X2+ 4x3+ y = 10

xj= 0,i=1,2,3,4
ye(0,1,2,3,..12)

Define min 18x + 8x2 + 20x3

subjectto 3xy + x2+ x3 = 6 -2y
X1+ x2+4x3 = 10-y
xjz 0,j=1,2,3,4

viy) =8y +
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maximization is with
respect to ujand up
with y temporarily
fixed

max (6-2y)u; + (10-y)uz
subjectto 3uj + uz < 18

viy) =8y +

u+uz=< 8

Primal LP )
v(y) = 8y + subjectto 3xy + x2+ x3 = 6 -2y
X1+ X2 +4x3 = 10-y
xj= 0,j=1,2,3,4
ar
Dual [P max (6-2y)uy + (10-y)uz
subjectto 3uj; + uz < 18
v(y) = 8y + up+uzx= 8
uj +4uz = 20
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uy=0,u=z=0

The dual feasible
region has five
extreme points

6

max (6-2y)u; + (10-y)uz

subjectto 3u; + uz = 18
up+uzx< 8
uy +4uz = 20

u; +4uz = 20
uz0,uzz=0

The dual feasible region
doesn't depend upon the
value of y
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s upz=0,u=z0

(0,5)

The solution of the LP
A must be one of these
: extreme points.

uy

(0,0) 6
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EXAMPLE v

Support 1 3 S 7 9

8y 8 24 40 56 72

3y + 50 | 53 097 655 /1= /75
-4y + 64 | 60=m7 52 44 36 28
-5y + 60| 55 45 35 25 15
-4y + 36 | 32 24 16 8 0
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Extreme 8y +(6-2y)uy

point + (10-y)uz

u
(0,0) 8y For any v,
(0,5) 3y + 50 the value of
(4,4) -4y + 64 v(y) is the
(5,3) -5y + 60 maximum of
(6.0) | -4y +36 || these five

, linear functions

0
.8
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Note, however, that v(y) is to be evaluated by
solving a linear programming problem, not by
identifying all of the dual extreme points and
computing the corresponding linear function
of y.

The number of linear functions which define
v(y) is, in general, "astronomical” !
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vo(y)

Q/(y) g

Note that v,(y) < v(y), i.e., y
it underestimates v(y)
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Solving the At each iteration, we must solve
Partial Master

Problem Minimize v ,(y)

ye¥

where v, (y) isthe current approximation to v(y),

that is,

- i Qv+ B
vi(y) = mafgg}(um{ot y+ B }

How do we accomplish this?
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The Pual Simplex Method
should be used in solving
the subproblems...

) g the

Subproblems

The optimal dual solution U of the previous
subproblem will still be feasible in the next
subproblem, and can be used as the initial
basic feasible solution of the dual, whereas
using the pr7ma/ simplex method would
generally require a Phase-One procedure with
artificial variables in order to obtain an initial
basic feasible solution.
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- - Suppose that v(y) is
Appr0x1matlng the maximum of P linear
the function v(y) functions (“supports”)

viy) = ma.x1lmum{ y+B}

If k supports are used (where k<P), we get an
underestimate of v(y):

i
vily) = malmlmgm{ y+B}
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Solve Partial

begin Master Problem

ie,miny (y)styeY

NE
.- Solve Subproblem Improve approxi-
Initialization - :
|| Evaluate v(¥) by mation by using
Select arbltrary solving LP with dual extreme pt to
Ve, kel fixed ¥ . generate new

support, kek+1
YES M
2
Benders’

Decomposition
Algor‘ithm

Minimize [maximum {&j y+p! }}
ye¥ 1£j=k

By introducing Minimize z
a new (continuous) i subject to

variable z, we can
write the master :
problem as an zzoky+ BF
"almost-pure” y €Y, z unrestricted
integer LP.

S the Use of the Dual Simplex Method

g
Subproblems yields another "bonus™:

Each dual-feasible solution encountered during
the solution of a subproblem can be used to
generate another linear support, thereby
improving the approximation of the function v(y)

That is, multiple supports can be added at each
iteration of Benders’ algorithm!
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Consider | Minimize 18x;+ 8xz + 20x3 + 8y Ty valuate v(0)
again our subjectto 3x;+ X2+ x3+2y =6 v(0) max 6uj + 10uz
example: X1+ x2+ 4x3+ y = 10 s.t. [3u; +uz = 18
xjz 0,j=1,2,3,4 U +uz< 8
ye {0,1,2,3,..12} up + 4up < 20
uz0, uzz=0
| Iteration #1 Let ¥ =0 be our initial "guess” The maximum occurs at the
extreme point (4,4), which we
We musit next evalugte v(0) will 1abel !
by solving the LP with y=0.
©D L Bricker, U. of 1A, 1993 ©D L Bricker, U. of 14, 1998
Our initial approximation for the Solving partial minimize v,(y) = - 4y + 64
function v is NEEIET TN s.t. ve{0,1,2,3,... 12}
v,(y) =8y +max (6-2y)ﬁ{+ (10_},);;12 The minimum occurs at y = 12
= - 4y + 64

where v,(12) = 16.

50
Note that () =15,(0) = 64 vi(y)

7hat s, the approximalion
i exact, et = 1) for =0,

T T T

T T
78 9 101112

o -
~

o -
o
o o
o -
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Evaluate v(12), i.e.

v(12) =8x12+ max (6-2x12)u; + (10-12)uz

st | Jur+uz< 18 -18u; 2u; &2y + B =8y + (6-2y)uf + (10-y)i3
up+uzx< 8 = 8y
u; +4uz = 20 . . .
120, upz0 and so we obtain the new approximation
_ ) v,(y) = max {- 4y+64, 8y }
The maximum occurs at the extreme point (0,0),

which we will label G2

XLl v(12)=96 > 16 = v,(12), so we do
Criterion

@D CBricker, U. of 14, 19798

not terminate.
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Minimize S IgEul| Evaluate v(5), i.e.
v,(y) = max {- 4y+64, 8y }
¢ 0123 121 v(5) =8 x5+ max (6-2x5)u; +(10-Shuz=-4u;+Suy
s.t. ye{0,1,2,3,...

s.t.3u; + uz £ 18

up+ uz < 8

The minimum ug +4uz = 20
50 occurs at y=5, u120, uzz0
where v, (5)=44 The minimum value is 65, achieved at the

extreme point (0,5), which we label U3

001 2 34 5 67 8 91011 12 Stopping v2(5)=44 < 65=v(5) so we cannot
@ Y Criterion ([

terminate
©D L Bricker, U. of |4, 1998
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G3y+ B3= 8y + (6-2y)ur+ (10-y)aF
=3y + 50

and so we obtain the new approximation

¥5(y) = max {- 4y+64, 8y,3y + 50}
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SRl  Evaluate v(2), i.e.

v(2) =8 X2+ max (6-2x2)u; +{10-2)uz= 2u;+8uy
s.t.3u; + uz < 18
u+uzx < 8
u; +4uz = 20
u1z0, uz=0
The minimum value is 56, achieved at both
the extreme points Gi'=(4,4) and (3=(0,5)

Stopping
Criterion
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v{2)= 56=v(2) so we can now
terminate!

This is accomplished by solving to optimality
the (almost-pure) integer LP:

Minimize z —aly ., pl
subject to zza y+P

PaS
220y +f°

z=aky + B
y €Y, z unrestricted

by an implicit enumeration (branch-&-bound)
algorithm. This is generally the most costly
part of the total computation!
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Rather than optimizing the master problem,
therefore, we might seek only a feasible
solution to the "pure” integer LP:

This modification to Benders’ algorithm will
result in significant savings in CPU time.
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Minimize

Solving partial
MERIMEUIEINE| v-(y) = max {- 4y+64, 8y, 3y + 50 ]

s.t.ye{0,1,2,3,... 12}
vi(y)

The minimum
occurs at y=2,
where v.(2)=56

SO e T
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Suboptimizing the

Partial Master Problem

Benders’ master problem was to choose yeY

so0 as to Minimize v (y)

where v, (y) is the current approximation to

viy), i.e., .
vi(y) = maximum {@y + '}
1=k
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Any y such that \_fk(y) is less than the
incumbent, V*, is a candidate for optimality.
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Embedding Benders® Algorithm

in an Implicit Enumeration

This is a modification of Benders' algorithm
with suboptimization of the Master Problem

Find yeY

satisfying
aly+Ble vx
&2y + PP = v

Suboptimizing the master
problem has been
accomplished when
reaching a terminal node
of the enumeration tree.
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The next partial master problem differs from
the previous one in that

#® it has an added constraint

# the right-hand-side V* might be lower
(if the incumbent has been replaced by
the solution of the subproblem just
solved)

Each of these changes to the system of
inequalities reduces the feasible region
of the system....
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Hence, any portion of the enumeration tree
which was fathomed during the previous
tree search remains fathomed when the
subsequent tree search begins.

That is, the enumeration can be "restarted”
at the terminal node which had been reached
in the previous Master Problem solution.

The enumeration tree is completely searched
only once during the entire algorithm!

Ko
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