

Egon Balas' algorithm for optimally solving zero-one LP problems is often referred to as...

Implicit Enumeration

and, because it requires only addition \& subtraction (no multiplication or divisions),

Additive Algorithm

NoT in standard form.
objective is makimize, not minimice
costs differ in sigh
one constraint is "greater-than-or-equal"

For each variable X_{j} having a negative cost, substitute $1-\mathrm{Y}_{\mathrm{j}}$ where $\mathrm{Y}_{\mathrm{j}} \in\{0,1\}$ is the complement of X_{j}.

$$
\begin{array}{cl}
- \text { Minimize } & 2 X_{1}-\left(1-Y_{2}\right)+3 X_{3}-\left(1-Y_{4}\right) \\
\text { subject to } & -X_{1}-2\left(1-Y_{2}\right)+X_{3} \quad \leq-1 \\
& -2 X_{1}+\left(1-Y_{2}\right) \quad-\left(1-Y_{4}\right) \leq 3 \\
& X_{j} \in\{0,1\}, j=1,3 \\
& Y_{j} \in\{0,1\}, j=2,4
\end{array}
$$

Standard Form

$$
\begin{array}{ll}
\text { Minimize } z= & \sum_{j \in \mathbb{N}} c_{j} x_{j} \\
\text { subject to } \quad & \sum_{j \in \mathbb{N}} a_{i j} x_{j} \leq b_{i}, \quad \forall i \in M \\
& x_{j} \in\{0,1\}, \forall j \in \mathbb{N}
\end{array}
$$

where $M=\{1,2,3, \ldots, m\}$ and $N=\{1,2,3, \ldots, n\}$
and $\mathrm{C}_{\mathrm{j}} \geq 0 \forall \mathbf{j} \in \mathrm{~N}$
Let's assume that the problem is of the form:

$$
\leftrightarrow \quad \text { nomegative costs! }
$$

Replace "Max $z^{\prime \prime}$ with "- Min $-z$ " and " 2 "with "

$$
\begin{aligned}
- \text { Minimize } & 2 X_{1}-X_{2}+3 X_{3}-X_{4} \\
\text { subject to } & -X_{1}-2 X_{2}+X_{3} \leq-1 \\
& -2 X_{1}+X_{2}-X_{4} \leq 3 \\
& X_{j} \in\{0,1\}, j=1,2,3,4
\end{aligned}
$$

That is, the original problem is equivalent to the following problem, which is in the "standard form" for Balas'algorithm.

$$
\begin{aligned}
& \text { 2-Minimize } 2 X_{1}+Y_{2}+3 X_{3}+Y_{4} \\
& \text { subject to } \\
& \begin{aligned}
&-X_{1}+Y_{2}+X_{3} \\
&-2 X_{1}-Y_{2} \leq 1 \\
&+Y_{4} \leq 2
\end{aligned} \\
& X_{j} \in\{0,1\}, j=1,3 \\
& Y_{i} \in\{0,1\}, j=2,4
\end{aligned}
$$

Erample

$$
\begin{array}{cl}
\text { Minimize } & 3 X_{1}+8 X_{2}+X_{3}+16 X_{4}+X_{5} \\
\text { subject to } & X_{1}-2 X_{2}-6 X_{3}+2 X_{4}+3 X_{5} \leq 0 \\
& X_{1}-3 X_{3}-2 X_{4}+2 X_{5} \leq-2 \\
& X_{1}-5 X_{2}+4 X_{3}-X_{4}-2 X_{5} \leq-5 \\
& X_{j} \in\{0,1\}, j=1,2,3,4,5
\end{array}
$$

There are $2^{5}=32$ binary vectors of length 5 , which we could explicitly enumerate.
\because

\#	X		$\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{~g}_{3}$	\#	X	z	$\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{~g}_{3}$
1	00000	0	000	17	10000	3	111
2	00001	1	3 2-2	18	10001	4	4 3-1
3	00010	16	2-2-1	19	10010	19	3-1 0
4	00011	17	5 5 0-3	20	10011	20	6 1-2
5	00100	1	-6-3 4	21	10100	4	-5-2 5
6	$\begin{array}{llllll}0 & 0 & 1 & 0 & 1\end{array}$	2	-3 -1	22	10101	5	$\begin{array}{lll}-2 & 0 & 3\end{array}$
7	$\begin{array}{llllll}0 & 0 & 1 & 1\end{array}$	17	-4 -5	23	10110	20	-3-4 4
8	$\begin{array}{lllllll}0 & 0 & 1 & 1\end{array}$	18	-1 $-3-31$	24	10111	21	0-2 2
9	01000	8	$\begin{array}{llll}-2 & 0 & -5\end{array}$	25	11000	11	$\begin{array}{lll}-1 & 1 & -4\end{array}$
10	01001	9	$\begin{array}{llll}1 & 2 & -7\end{array}$	26	11001	12	2 3-6
11	01010	24	0-2 -6	27	11010	27	1-1-5
12	$\begin{array}{llllll}0 & 1 & 0 & 1 & 1\end{array}$	25	$\begin{array}{lll}3 & 0 & -8\end{array}$	28	11011	28	$\begin{array}{llll}4 & 1 & -7\end{array}$
13	$\begin{array}{llllll}0 & 1 & 1 & 0\end{array}$	9	-8-3-1	29	11100	12	$-7-20$
14	$\begin{array}{llllll}0 & 1 & 1 & 0 & 1\end{array}$	10	-5 -1-3	30	11101	13	$\begin{array}{llll}-4 & 0 & -2\end{array}$
15	011110	25	-6-5-2	31	11110	25	-5-4-1
16	$\begin{array}{llllll}0 & 1 & 1 & 1\end{array}$	26	-3-3-4	32	11111	26	$-2-2-3$

\#	x	$\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{~g}^{\prime}$
17	10000	3 1 1 1 1
18	10001	$4 \geqslant 4$.
19	10010	19 S 1
20	10011	20 -
21	10100	$4-5 \mid 2$.
22	10101	-2
23	10110	20-3-4
24	10111	2100
25	11000	$11-1 / 1$.
26	11001	12 \% 3
27	11010	27 1 1
28	11011	
29	11100	$12-7-2)$
30	11101	13 -4
31	11110	$25-5-4 / 1$
32	11111	$26-2 \mid-2)$

one feasible in all 3 constraints

The order of branching is not important, e.g., one can branch on X_{3} before branching on X_{2}

/h fact, the choice of branching
variable may differ on the same level of the tree.
For each of the 32 binary vectors, let's evaluate

$$
\left\{\begin{aligned}
z & =3 X_{1}+8 X_{2}+X_{3}+16 X_{4}+X_{5} \\
g_{1}(X) & =X_{1}-2 x_{2}-6 x_{3}+2 X_{4}+3 X_{5} \leq 0 \\
g_{2}(X) & =X_{1}-3 x_{3}-2 X_{4}+2 X_{5} \\
g_{3}(X) & =-2 \\
X_{1}-5 X_{2}+4 X_{3}-X_{4}-2 X_{5} & \leq-5
\end{aligned}\right.
$$

X		$\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{~g}_{3}$	
1	00000	0 0 0 0	
2	00001	$3,2,2$	
3	00010	16 2 -2$)$	
4	00011	17 50, 3	
5	00100	$1-6-3.4$	
6	$\begin{array}{lllllll}0 & 0 & 1 & 0 & 1\end{array}$	$2-3-1.2$	
7	00110	17-4-5	
8	$\begin{array}{llllll}0 & 0 & 1 & 1 & 1\end{array}$	$18-1-3$	
9	01000	$8-2$ O	
10	$\begin{array}{llllll}0 & 1 & 0 & 0 & 1\end{array}$	9) 2 , -7 \%	
11	010010	$24: 0 \\|-2$	
12	0110011	25 8, -8	
13	011100	$9-8-3]$	
14	0111001	$10-5$, \%	
15	011110	$25-6-5$	
16	01111	$26-3-3.4$	

Solution \#11 is the only
Solution 11 is the only

Partial Solutions

A "partial solution" corresponds to a node of the enumeration tree in which binary values have been assigned to a subset of the variables

$$
\begin{array}{ll}
\text { Minimize } & 3 X_{1}+8 x_{2}+X_{3}+16 X_{4}+X_{5} \\
\text { subject to } & X_{1}-2 X_{2}-6 X_{3}+2 X_{4}+3 X_{5} \leq 0 \\
& X_{1}-3 X_{3}-2 X_{4}+2 X_{5} \leq-2 \\
& X_{1}-5 X_{2}+4 X_{3}-X_{4}-2 X_{5} \leq-5 \\
& X_{j} \in\{0,1\}, j=1,2,3,4,5
\end{array}
$$

Representation of a partial solution may be done by a vector of \pm indices of the

Fathoming Test \#1

A free variable $X_{j}(j \notin J)$ which has nonnegative coefficients in every constraint which is violated by the zero completion should be zero, since assigning it the value 1 will improve neither the objective function nor feasibility.

Fathoming Mest \#2

Let Z be the objective function value of the zero completion of the partial solution J.

If $Z+C_{k} \geq \underline{Z}$ (the incumbent) for some $k \notin J$, then no completion of J which has $X_{k}=1$ can be optimal!

IFathoming of a Partial Solution

A partial solution (node) of an enumeration tree may be considered fathomed if one of the following may be demonstrated:

- all completions violate one or more constraints
- all completions are inferior (with respect to the objective) to the incumbent
- the zero completion is feasible \& superior to the incumbent (\& therefore becomes the new incumbent)

Compute

$$
A=\left\{j \mid j \in N-J, \mathbf{a}_{i j} \geq 0 \forall i \in M \text { such that } S_{i}<0\right\}
$$

and

If $N^{1}=\varnothing$, then the partial solution J may be fathomed!

FATHOMING TEST ONE

Compute

$$
B=\left\{j \mid j \in N^{1}, z+C_{j} \geq \underline{Z}\right\}
$$

and

$$
\mathrm{N}^{2}=\mathrm{N}^{1}-\mathrm{B} \quad \begin{aligned}
& \text { indices of s// free } \\
& \text { variables whichare } \\
& \text { efigible to be assigned } \\
& \text { vilue ; }
\end{aligned}
$$

If $N^{2}=\varnothing$, then the partial solution may be fathomed!

FATHOMING

TEST TW0

Compute

If $\mathrm{C} \neq \varnothing$ then the partial solution is fathomed.

Selection of a liree Variable for liforward Step

When the fathoming tests fail to fathom the current partial solution, branching wi/l be performed, by fixing a free variable X,

$$
\mathrm{J} \leftarrow \mathrm{~J},\{+\mathrm{j}]
$$

$$
\begin{aligned}
& \text { The positive index } y^{\prime \prime} \text { is appended } \\
& \text { to the end of the current vector }
\end{aligned}
$$

Any free variable might be chosen.... is there a "best" choice?

Balas' strategy was to choose the free variable which would result in the least infeasibility, i.e., the maximum ("least negative") value of v_{j}

$$
\left.j^{*}=\underset{j \in N^{2}}{\operatorname{argmax}}\left\{v_{j}\right\}=\operatorname{argmax} \sum_{j \in N^{2}} \sum_{i}\left(s_{i}-a_{i j}\right)\right)^{-}
$$

Other rules might result in partial solutions which are more easily fathomed.

Let $\quad S_{i}=$ slack in constraint \#in the zero completion of J
Then $S_{i}-a_{i j}=$ slack in constraint \#i if free variable $X_{j}=1$ while other free variables are assigned value zero

Define $\quad\left(S_{i}-a_{i j}\right)^{-}=\min \left\{0, S_{i}-a_{i j}\right\}$
NEGAT/VE PART $v_{j}=\sum_{i}\left(S_{i}-a_{i j}\right)^{-} \quad$ measures the infeasibility which results from fixing $X_{j}=1$

$$
\text { Minimize } \quad\left\{\begin{array}{l}
4 X_{1}+8 X_{2}+9 X_{3}+3 X_{4}+4 X_{5}+10 X_{6} \\
\text { s.t. }\left\{\begin{array}{c}
4 X_{1}-5 X_{2}-3 X_{3}-2 X_{4}-X_{5}+8 X_{6} \leq-8 \\
-5 X_{1}+2 X_{2}+9 X_{3}+8 X_{4}-3 X_{5}+8 X_{6} \leq 7 \\
8 X_{1}+5 X_{2}-4 X_{3} \\
X_{j} \in\{0,1\} \forall j=1, \ldots, 6
\end{array}\right.
\end{array}\right.
$$

Inserting slack variables:

$$
\begin{array}{rr}
4 X_{1}-5 X_{2}-3 X_{3}-2 X_{4}-X_{5}+8 X_{6}+S_{1}= & -8 \\
-5 X_{1}+2 X_{2}+9 X_{3}+8 X_{4}-3 X_{5}+8 X_{6}+S_{2}= & 7 \\
8 X_{1}+5 X_{2}-4 X_{3}+X_{5}+6 X_{6}+S_{3}= & 6
\end{array}
$$

\because


```
# variables = b
\# constraints \(=3\)
```


Randon ILP (seed $=148458$)

1	2	3	4	5	6	b
4	8	9	3	4	10	min
4	-5	-3	-2	-1	$8 \leq$	-8
-5	2	0	8	-3	8	\leq
8	5	-4	0	1	6	6
6						

Constraints are of the form $A X \leq b$

(1) $\mathrm{J}=\varnothing$

Constraints violated by zero completion:

$$
\begin{aligned}
& S_{1}=-8 \longleftarrow_{2} \text { violation! } \\
& S_{2}=7 \\
& S_{3}=6 \\
& \text { ok }
\end{aligned}
$$

$A=(1,6):$ variables which cannot improve feasibility in violated constraints if equal to 1

FATHOMING TEST \#1

$\mathrm{N}^{1} \neq \varnothing \quad$, so this test fails to fathom the partial solution!

Indices of free variables which might be assigned value of 1
(1) $\mathrm{J}=\varnothing$
$\mathrm{N}^{1}=\mathrm{N}-\mathrm{J}-\mathrm{A}=[1,2,3,4,5,6]-\varnothing-\{1,6\}=[2,3,4,5]$

(1) $\mathrm{J}=\varnothing$

Farhoming Test \#2 isn't applicable, since we do not yet have a finite incumbent.
(1) $\mathrm{J}=\varnothing$

Since the fathoming tests have all failed, we must next choose a variable for branching.

$$
4 X_{1}-5 X_{2}-3 X_{3}-2 X_{4}-X_{5}+8 X_{6}+S_{1}=-8
$$

It is possible to satisfy constraint \#1 by assigning values to the free variables having negative coefficients, e.g.,

$$
X_{2}=X_{3}=X_{4}=X_{5}=1 \Rightarrow S_{1}=-8+5+3+2+1=3>0 \quad \stackrel{\text { feasible! }}{\Rightarrow C=\varnothing}
$$

FATHOMING This test fails to fathom the partial sol'n

TEST $\# 3$

$\left\{\begin{array}{l}\mathrm{J}=\varnothing \\ \mathrm{X}_{2}=1 \\ (2) \mathrm{J}=[+2]\end{array}\right.$

$$
\begin{aligned}
& \mathrm{J}=\{+2,-\underline{5}\} \\
& \text { (6) (3) } \mathrm{J}=\{+2,+5\} \\
& X_{4}=0 \quad\left\{\begin{array}{l}
X_{4}=1
\end{array}\right. \\
& J=\{+2,+5,-4\} \\
& \text { (5) (4) } \mathrm{J}=\{+2,+5,+4\}
\end{aligned}
$$

Randon ILF (seed $=148458$)

Solution is:
$\begin{array}{lllllll}i & 1 & 2 & 3 & 4 & 5 & 6 \\ X[i] & 0 & 1 & 0 & 1 & 1 & 0\end{array}$
Objective function value is 15

Example Problem

\# variables = 5

\# constraints = 3

$$
\begin{array}{rrrrrcc}
1 & 2 & 3 & 4 & 5 & b \\
\cline { 1 - 5 } & 7 & 10 & 3 & 1 & & \text { min } \\
-1 & 3 & -5 & -1 & 4 & \leq-2 \\
2 & -6 & 3 & 2 & -2 & \leq & 0 \\
0 & 1 & -2 & 1 & 1 & \leq & -1
\end{array}
$$

Constraints are of the form $\mathrm{nX} \leq \mathrm{b}$

Example Problem

CPU time= 1.75 sec .
Solution is:

$$
\begin{array}{clllll}
\mathrm{i} & 1 & 2 & 3 & 4 & 5 \\
\mathrm{X}[\mathrm{i}] & 0 & 1 & 1 & 0 & 0
\end{array}
$$

Objective function value is 17

	J	V1	A			
1		1	1	3	5	7
$\frac{2}{3}$	-6	1	1		5	7
4	-6 6 - 2	24	3	7	8	
$\stackrel{5}{6}$	$\begin{array}{llll}-6 & -2 & \\ -6 & -2 & 8\end{array}$		$\frac{1}{3}$	3	5	7
7	-6-2-8	1	1	3	5	7

N1	B	N2	C	v	j	Z*
2468		2468		$\begin{array}{lllll}-3 & -1 & 0 & -4\end{array}$	6	***
248		28		-3-4	2	9
$\begin{array}{lll}1 & 4 \\ 4 & 8\end{array}$	45		2		8	9
48 14	4 1				8	9
4						0

Choosing the branching variable:
Setting variable 2 equal to 1 results in constraint violations $\{0,1,0,2,0\}$ and so $\mathrm{V}_{2}=-3$.
Setting variable 4 equal to 1 results in constraint violations $\{0,1,0,0,0\}$ and so $V 4=-1$
Setting variable 6 equal to 1 results in constraint violations $\{0,0,0,0,0\}$ and so $V 6=0$.
Setting variable 6 equal to 1 results in constraint violations $\{0,0,0,4,0\}$ and $50 \vee 8=0$.

Randon ILP (seed $=825025$)

* variables $=8$
\# constraints $=5$

1	2	3	4	5	6	7	8		b
3	4	5	9	5	9	4	6		min
3	$\begin{array}{r} -5 \\ 8 \\ \hline \end{array}$	1	$\begin{gathered} -2 \\ 8 \\ \hline \end{gathered}$	-6	-4	6	-5	\leq	$\begin{array}{r} -2 \\ 7 \end{array}$
9	2	4	7	-3		6	1		
9	$-_{1}^{2}$	5	-2		-4	\bigcirc	4	\leq	
	-1		1		-				

Constraints are of the form $A x \leq b$

The first constraint is violated by the zero completion ($5=-2$).
Variables $1,3,5, \& 7$ have positive coefficients in this constraint, and thus cannot help in achieving feasibility. They form the set A, which are implicitly fixed $=0$, leaving $N=\{2,4,6,6\}$.
Test 2 isn't applicable because no incumbent has been identified.
Test 3 considers the violated constraints in $V 1$ to determine whether it is possible to satisfy them. In this case, we see that increasing any one of variables 2,4,6, or 8 will result in feasibility, so $[$ is empty.
The fathoming tests have failed, and therefore we must perform a forward branch.

The (rather arbitrary) rule is to select that variable causing the least. infeasibility, and so variable 6 is selected for the branching. Therefore, J, which was previously empty, is now (+6).

At node $2, \mathrm{~J}=\{+6\}$ and no constraints are violated by the zero completion (i.e., $X=1$ and all other variables zero).
Since no other completion of this partial solution can cost less than the zero completion, the node is fathomed, and we may backtrack.

Backtracking: J becomes \{-6\}

Therefore we cannot fathom this node, and must make a forward move, i.e., branch.
Selection of branching variable: Fixing variable 2 at. 1 gives constrant violations $0,0,1,0,2,0$, while fixing variable 8 at 1 gives violations $0,0,0,4,0$. Variable 2 results in less infeasibility, and is selected for branching.

At node 4 , constraints 2 \& 4 are violated by the zero completion, but variables $3,7,8.8$ cannot assist in making these constraints feasible, and are therefore implicitly set equal to zero, leaving variables $1,4,85$ as free variables.
Consider $\times 4$: together with $\times 2$ this gives a cost of 13 , exceeding the incumbent (9); likewise, variable $\times 5$ together with 82 gives a cost. of 9 which is no better than the incumbent. Hence variables 485 may be implicitly fixed at value zero, leaving only variable 1 as a free variable.

With variable 2 equal to 1 and only variable 1 free, we can determine that the violated constraint \#2 cannot be made feasible. (Constraint. 4 could be made feasible by setting $\times 1=1$.) Hence $C=\{2\}$ and the subproblem is fathomed.
we must now backtrack:
Currently $J=\{-6,+2\}$ and so the next node will have $J=\{+\underline{6},-\underline{2}\}$.

We see that with only variable 8 , it is possible to satisfy constraint I (by setting $88=1$), so C is empty.
Fixing $\times 8=1$ results in infeasibilities $0,0,0,4,0$. Obviously variable 8 is chosen for the branching.
J, which was $\{-6,-2\}$, is extended on the right by +8 , i.e., $J=\{-\underline{6},-2,+8\}$.

At node 6 , the zero completion violates constraint 4 , and the free variables $3,5,8,7$ cannot help to remove the feasibility, and hence are implicity fixed at value zero, leaving only variables $1 \& 4$ as free variables.
However, increasing variable 1 would result in a cost of $6+3$, which is no better than the incumbent, while increasing variable 4 would result in a cost of 15 , worse than the incumbent. These two variables are implicitly fixed at value zero, therefore, leaving no free variables. The node is fathomed.

1	2	3	4	5	6	7	8		b
3	4	5	9	5	9	4	6		min
3	-5	4	-2	6	-4	6	-5	\leq	
0	8	1	8	-2	2	0	4	crer	
-9	2	4	- 7	-3	2	${ }^{6}$	1		
-5	2	5	-2	-6	-4	0	4	c	0
	1	1	1	-3	6	7	0		

	J	W1	A		N1	B	N2	C	V	j
Z										
7	$-6-2-8$	1	1	3	5	7	4	4		

At node 7 , variables $2,6,88$ are all fixed at zero, and the first. constraint is violated by the zero completion. Variables $1,3,5$, and 7 all have positive coefficients in this constraint and are therefore unable to assist in gaining feasibility. Hence they are implicitly fixed at value zero, leaving only variable 4 as a free variable. However, setting variable 4 equal to 1 gives a cost (9) which is no better than the incumbent, and therefore this node can be fathomed.

