

An American Put Option gives the holder

the *right* (but not the obligation) to *sell* a specified quantity of a commodity at a specified "strike" *price* at *any time* the holder chooses, on or before a specified *expiration* date. (*A European Put Option can only be exercised at the expiration date.*)

© Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

American Option Price

02/22/02

page 1 of 15

What is the expected value of this option?

(Clearly it is worth at least \$10, because it could be exercised immediately by buying 100 shares at \$2 and selling them for \$2.10 each.)

EXAMPLE:

- The *current price* of a share of stock in XYZ is P = \$2.00.
- You have an option to sell 100 shares of this stock for
 P' = \$2.10 ("strike price") at any time you choose within the next six months.
- Assume the time value of money is 5% per annum.
- The annual *volatility* of the commodity price is σ=0.2.

Volatility: A measure of the previous fluctuations in share price (crudely: an indicator of the commodity's up/downess). Usually, the standard deviation of the log of price returns. --http://www.numa.com/ref/volatili.htm

American Option Price

page 2 of 15

ASSUMPTIONS

We assume the *Cox-Ross-Rubenstein* binomial option pricing model, according to which the price of the commodity is assumed to follow a *two-state discrete jump* process:

02/22/02

If the price of the commodity is P in period t, then its price

in period t+1 will be

- *Pu* with a certain probability *q*, and
- P_{μ} with probability 1-q,

where

```
u = e^{\sigma \sqrt{\Delta t}} > 1
q = \frac{1}{2} + \frac{\sqrt{\Delta t}}{2\sigma} \left( r - \frac{1}{2} \sigma^2 \right)
 \delta = e^{-r\Delta t}
```


Here,

r is the annual rate of interest (co compounded),

- σ is the annualized volatility of th -y 1 ٠,
- Δt is the length of a period in years

1-q p/u	1-q p/u $1-q$ p/u p/u
ontinuously	
ne commodity price.	

pu

American Option Price	02/22/02	page 5 of 15	American Option Price	02/22/02	page 6 of 15
<mark>Sample data:</mark>			The	50 stages are each of length	Δt = 0.01 year.
P = 2 = curren	t commodity price		D The st	tates of the DP model are the	possible commodity
P' = 2.1 = "stri	ke" price		P prices	$p \in \left\{ p_0 u^i \mid i = -(N+1), -N,, 0,, 0 \right\}$	N, (N+1)
r = 5% annual	interest rate		The tv	vo decisions at each stage are	$x \in \{\text{KEEP, EXERCISE}\}$
T = 0.5 years (of option)	(time to expiration	cing IIX	The tr	ransition probabilities are:	
σ = 0.2 annua	l volatility of Number	expiration 0.5 years	D	$P_{ii}^{x} = \begin{cases} q & \text{if } j = ui \\ 1 - q & \text{if } j = i/u \end{cases}$	
commodity	v price Volatility	0.2		0 otherwise	

 $\Delta t = .01$ year

Annual rate of interest 5 Strike price 210 Current price 200 Cancel ОК

page 7 of 15

If we choose the length of the

time periods (Δt) sufficiently

short, this gives a reasonably

close approximation to reality.

. pu³

рu

pu²

р

$$P_{ij}^{x} = \begin{cases} q & \text{if } j = ui \\ 1 - q & \text{if } j = i/u \\ 0 & \text{otherwise} \end{cases}$$

The *reward* function is

$$g(i,x) = \begin{cases} 0 & \text{if } x = \text{"keep"} \\ \overline{p} - i & \text{if } x = \text{"exercise option"} \end{cases}$$

The *optimal value* function is the expected value of the option:

$$f_{t}(i) = \max\begin{cases} \overline{p} - i \\ q \delta f_{t-1}(iu) + (1-q) \delta f_{t-1}(iu) \end{cases}$$

with the *post-terminal condition*:

$$f_{N+1}(i) = 0$$

APL function

	V	z+F N;t;v
[1]		A
[2]		A Option pricing
[3]		A
[4]		:if N=0
[5]		z+((ps)p0),-BIG
[6]		:else
[7]		A Recursive def'n of optimal value functi
[8]		v+(F N-1)[TRANSITION(L/s)((/s)Lso.×(2pu)
[9]		v[;2;1]+v[;2;2]+Strike-s
[10]]	z+(q,1-q) Maximize_E v
[11]	1	:endif

on •.*d)

[12]

02/22/02 page 9 of 15 02/22/02 page 10 of 15 American Option Price American Option Price (hold) (execute) (hold) (execute) s ∖ x: s \ x: 0 1 Maximum 0 1 Maximum 127.9 0.000 82.119 82.119 127.9 79.096 82.119 82.119 76.270 75.935 76.270 76.270 133.7 0.000 76.270 133.7 70.153 139.8 0.000 70.153 70.153 139.8 69.804 70.153 0.000 63.757 63.757 146.2 63.392 63.757 63.757 146.2 152.9 0.000 57.069 57.069 152.9 56.686 57.069 57.069 159.9 0.000 50.074 50.074 159.9 49.674 50.074 50.074 42.760 167.2 0.000 42.760 167.2 42.341 42.760 42.760 174.9 0.000 35.111 35.111 174.9 34.673 35.111 35.111 27.112 In the next-to-last stage, 182.9 0.000 27.112 182.9 26.655 27.112 27.112 0.000 18.747 18.269 18.747 191.3 18.747 191.3 18.747 it becomes optimal to hold 0.000 10.000 9.500 10.000 200.0 10.000 200.0 10.000 As we would expect, the option if current price 209.1 0.000 0.853 0.853 209.1 4.832 0.853 4.832 is only slightly below strike at the final stage it 218.7 0.000 $^{-8.713}$ 0.000 218.7 0.412 $^{-8.713}$ 0.412 price! is optimal to execute -18.716 228.7 0.000 $^{-}18.716$ 0.000 228.7 0.000 0.000 239.2 0.000 -29.1770.000 239.2 0.000 $^{-29.177}$ 0.000 the option if & only 250.1 0.000 -40.116 0.000 250.1 0.000 $^{-40.116}$ 0.000 if the current price 0.000 -51.555 0.000 261.6 0.000 0.000 261.6 $^{-51.555}$ of the commodity is 0.000 273.5 0.000 -63.518273.5 0.000 $^{-63.518}$ 0.000 less than the strike 286.0 0.000 $^{-76.028}$ 0.000 286.0 0.000 $^{-}76.028$ 0.000 299.1 0.000 -89.1090.000 299.1 0.000 -89.1090.000 price! -102.790 0.000 312.8 0.000 $^{-}102.790$ 0.000 312.8 0.000

....etc.

	(h	old)	(exec	cute)			
s \	x:	0		1	Maximum		
127.9	79	.096	82	.119	82.1	19	\bigcirc
133.7	75	.935	76	.270	76.2	70	\bigcirc
139.8	69	.804	70	.153	70.1	53	
146.2	63	.392	63	.757	63.7	57	
152.9	56	.686	57	.069	57.00	69	223
159.9	49	.674	50	.074	50.0	74	
167.2	42	.341	42	.760	42.70	60	615
174.9	34	.826	35	.111	35.1	11	
182.9	27	.439	27	.112	27.43	39	קסל
191.3	20	.755	18	.747	20.7	55	H
200.0	14	.625	10	.000	14.62	25	CR
209.1	10	.145	0	.853	10.14	45	
218.7	6	.149	- 8	.713	6.14	49	d
228.7	3	.848	-18	.716	3.84	48	UD)
239.2	1	.883	-29	.177	1.88	83	
250.1	1	.044	-40	.116	1.04	44	
261.6	0	.377	-51	.555	0.3	77	
273.5	0	.179	-63	518	0.1	79	
286.0	0	.040	-76	.028	0.04	40	
299.1	0	.014	-89	.109	0.01	14	
312.8	0	.001	-102	.790	0.00	01	

Current	Optimal	
State	Decision	
127.8814638	exec	
133.7303061	exec	
139.8466535	exec	
146.2427409	exec	
152.9313624	exec	
159.9258977	exec	
167.2403381	exec	
174.889315	exec	
182.8881287	keep	
191.2527797	keep	
200	keep	
209.147287	keep	
218.7129382	keep	
228.7160883	keep	
239.1767467	keep	
250.1158384	keep	
261.5552452	keep	
273.5178496	keep	
286.0275809	keep	
299.1094627	keep	

0.001 \Rightarrow value of option is \$14.63 (if current price is \$200)

American Option Price

02/22/02

How big a "killing" must be possible in order to execute the option immediately?

page 13 of 15

9D

(no

American Option Price

312.7896632

keep

02/22/02

Optimal

Value

82.119

76.270 70.153

63.757

57.069 50.074 42.760 35.111 27.439

20.755 14.625

10.145

6.149

3.848 1.883 1.044 0.377 0.179 0.040 0.014

page 14 of 15

