DiP Modela

An American Put Option gives the holder
the right (but not the obligation)
to sell a specified quantity of a commodity
at a specified "strike" price
at any time the holder chooses,
on or before a specified expiration date.
(A European Put Option can only be exercised at the expiration date.)
© Dennis Bricker
Dept of Mechanical \& Industrial Engineering
The University of Iowa

What is the expected value of this option?
(Clearly it is worth at least $\$ 10$, because it could be exercised immediately by buying 100 shares at $\$ 2$ and selling them for $\$ 2.10$ each.)

EXAMPLE:

- The current price of a share of stock in XYZ is $\mathrm{P}=$ \$2.00.
- You have an option to sell 100 shares of this stock for $\mathrm{P}^{\prime}=\$ 2.10$ ("strike price") at any time you choose within the next six months.
- Assume the time value of money is 5% per annum.
- The annual volatility of the commodity price is $\sigma=0.2$.

Volatility: A measure of the previous fluctuations in share price (crudely: an indicator of the commodity's up/downess). Usually, the standard deviation of the log of price returns.
--http://www.numa.com/ref/volatili.htm

ASSUMPTIONS

We assume the Cox-Ross-Rubenstein binomial option pricing model, according to which the price of the commodity is assumed to follow a two-state discrete jump process:

If the price of the commodity is P in period t, then its price
in period $\mathrm{t}+1$ will be

- Pu with a certain probability q, and
- P / u with probability $1-q$,
where

$$
\begin{aligned}
& u=e^{\sigma \sqrt{\Delta t}}>1 \\
& q=\frac{1}{2}+\frac{\sqrt{\Delta t}}{2 \sigma}\left(r-\frac{1}{2} \sigma^{2}\right) \\
& \delta=e^{-r \Delta t}
\end{aligned}
$$

Here,
r is the annual rate of interest (continuously compounded),
σ is the annualized volatility of the commodity price,
Δt is the length of a period in years

Sample data:

$$
\begin{aligned}
& \mathrm{P}=2=\text { current commodity price } \\
& \mathrm{P}^{\prime}=2.1=\text { "strike" price } \\
& \mathrm{r}=5 \% \text { annual interest rate } \\
& \mathrm{T}=0.5 \text { years (time to expiration } \\
& \quad \text { of option) } \\
& \sigma=0.2 \text { annual volatility of } \\
& \quad \text { commodity price } \\
& \Delta \mathrm{t}=.01 \text { year }
\end{aligned}
$$

The 50 stages are each of length $\Delta t=0.01$ yearThe states of the DP model are the possible commodityprices $p \in\left\{p_{0} u^{i} \mid i=-(N+1),-N, \ldots, 0, \ldots, N,(N+1)\right\}$The two decisions at each stage are $x \in\{$ KEEP, EXERCISE $\}$ \square The transition probabilities are:

$$
P_{i j}^{x}= \begin{cases}q & \text { if } j=u i \\ 1-q & \text { if } j=i / u \\ 0 & \text { otherwise }\end{cases}
$$

The reward function is

$$
g(i, x)= \begin{cases}0 & \text { if } x=\text { "keep" } \\ \bar{p}-i & \text { if } x=\text { "exercise option" }\end{cases}
$$

The optimal value function is the expected value of the option:

$$
f_{t}(i)=\max \left\{\begin{array}{l}
\bar{p}-i \\
q \delta f_{t-1}(i u)+(1-q) \delta f_{t-1}(i / u)
\end{array}\right.
$$

with the post-terminal condition:

$$
f_{N+1}(i)=0
$$

(S)
As we would expect, at the final stage it is optimal to execute the option if \& only if the current price of the commodity is less than the strike price!

APL function

```
l]}\begin{array}{lll}{\nabla}&{z+F}&{N;t;v}\\{1]}&{A}&{}\\{2]}&{A}&{Option pricing}
[2] ll
```



```
    :else
    a Recursive def'n of optimal value function
    v+(F N-1)[TRANSITION(L/s) 「(r/s)Lso.*(2pu)O.*d)
    v[;2;1]+v[;2;2]+Strike-s
    v+(q;1]+v);2;2]+Strike
    :endif
[12]
```


In the next-to-last stage, it becomes optimal to hold the option if current price is only slightly below strike price!

s \x：		（hold）	（execute）			0
		0	1	Maximum		
127.9		79.096	82.119	82.119		
133.7		75.935	76.270	76.270		$\bigcirc p$
139.8		69.804	70.153	70.153	\square	
146.2		63.392	63.757	63.757	\square	90）
152.9		56.686	57.069	57.069	2ロ5	\square
159.9		49.674	50.074	50.074		1
167.2		42.341	42.760	42.760	（1）	V
174.9		34.826	35.111	35.111		
182.9		27.439	27.112	27.439	\％p	
191.3		20.755	18.747	20.755		90
200.0		14.625	10.000	14.625	90	\square
209.1		10.145	0.853	10.145	\checkmark	\square
218.7		6.149	－8．713	6.149	，	$\square \square$
228.7		3.848	－18．716	3.848	\bigcirc	
239.2		1.883	－29．177	1.883		
250.1		1.044	－40．116	1.044		$\xrightarrow{\square}$
261.6		0.377	－51．555	0.377		
273.5		0.179	－63．518	0.179		
286.0		0.040	－76．028	0.040		
299.1		0.014	－89．109	0.014		
312.8		0.001	－102．790	0.001		

How big a＂killing＂must be possible in order to execute the option immediately？

Current	Optimal	Optimal		（ab）
State	Decision	Value	0	OP
127.8814638	exec	82.119		0
133.7303061	exec	76.270	\square	go
139.8466535	exec	70.153	术术	9
146.2427409	exec	63.757		$\sqrt{1}$
152.9313624	exec	57.069	（ab）	
159.9258977	exec	50.074		
167.2403381	exec	42.760	08	90
174.889315	exec	35.111	90	\square
182.8881287	keep	27.439	\bigcirc	\square
191.2527797	keep	20.755		$\square \square$
200	keep	14.625	P	\square
209.147287	keep	10.145		$\square \square$
218.7129382	keep	6.149		\square
228.7160883	keep	3.848		
239.1767467	keep	1.883		
250.1158384	keep	1.044		
261.5552452	keep	0.377		
273.5178496	keep	0.179		
286.0275809	keep	0.040		
299.1094627	keep	0.014		
312.7896632	keep	0.001		

\Rightarrow value of option is $\$ 14.63$（if current price is $\$ 200$ ）

Frank and Ernest

[^0]
[^0]: Copyright（c） 1997 by Thaves．Distributed from www．thecomics．com．

