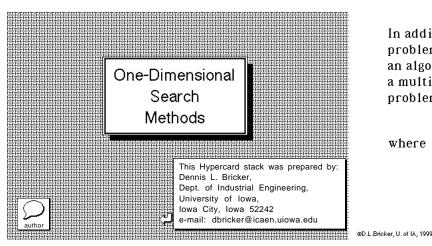
One-dimensional Search

page 1



- an analytic expression for f(x) might be unknown... f(x) might be "evaluated" by performing a laboratory or simulation experiment, for example
- it is assumed that the function f is *unimodal*, i.e., a local optimum will be globally optimal.
- the result of minimization will be a "sufficiently small" *interval of uncertainty* containing the optimum.
- the derivative of f need not be computed in many of these methods.

⊚D.L.Bricker, U. of IA, 1999

Simple, but inefficient.... not recommended!

Assume that at the nth iteration we have the interval of uncertainty $[a^n,b^n]$ and its midpoint $a^n = a^n + b^n$

$$\mathbf{C}^{\mathbf{n}} = \frac{\mathbf{a}^{\mathbf{n}} + \mathbf{b}^{\mathbf{n}}}{2} ,$$

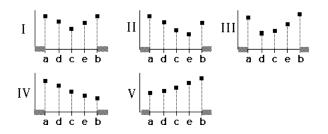
along with the function values $f(a^n),\,f(b^n),\,\&\,f(c^n)$

ŝ

●D.L.Bricker, U. of IA, 1999

Consider the relative magnitudes of the function at these five points:

There are several cases to consider:



OD.L.Bricker, U. of IA, 1999

In addition to solving nonlinear optimization problems with a single variable, we require an algorithm to do "line searches" as part of a multi-dimensional nonlinear optimization problem:

$$\begin{array}{|c|c|} \mathbf{Minimize} & \mathbf{f} \left(\mathbf{x}^{k} + \mathbf{t} \ \mathbf{d}^{k} \right) \end{array}$$

where $x^k = \text{the } k^{\text{th}}$ iterate, $x^k \in \mathbb{R}^n$ $d^k = (\text{feasible}) \text{ direction of descent}$ t = step size $x^{k+1} = x^k + t^* d^k$ for optimal stepsize t^*

Three-Point Equi-Interval Search

Golden-Section Search

🕼 Fibonacci Search

Polynomial Interpolation

⊚D.L.Bricker, U. of IA, 1999

and e

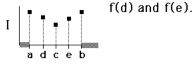
Find the midpoints of the two subintervals [aⁿ,cⁿ] and [cⁿ,bⁿ]:

$$d^{n} = \frac{3a^{n} + b^{n}}{4}, e^{n} = \frac{a^{n} + 3b^{n}}{4}$$

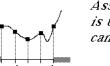
valuate f(dⁿ) and f(eⁿ):

@D.L.Bricker, U. of IA, 1999

For example, suppose that f(c) is lower than

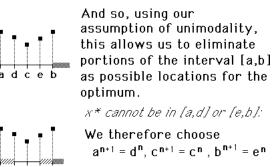


f



Assuming that the function is unimodal, the minimum cannot be in the interval /e,b/l

●D.L.Bricker, U. of IA, 1999

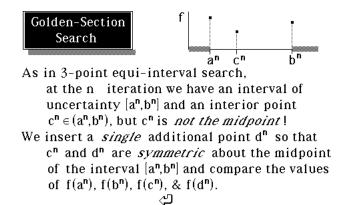


to begin iteration n+1.

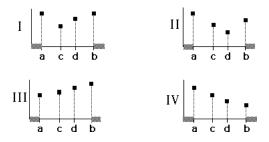
In the event that the smallest of f(a), f(b), f(c), f(d), & f(e) is not unique, less than 25% of the interval can be eliminated.

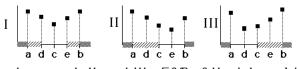
This event will generally be very rare, especially given round-off errors, etc.

@D.L.Bricker, U. of IA, 1999

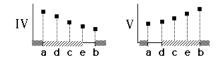


Assuming unimodality, we can eliminate a segment from the interval of uncertainty





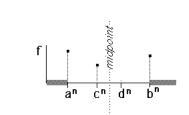
In cases I, II, and III, 50% of the interval is eliminated.



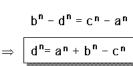
In cases IV and V, 75% of the interval is eliminated!

@D.L.Bricker, U. of IA, 1999

@D.L.Bricker, U. of IA, 1999

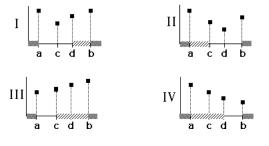


The new point dⁿ is selected so as to be symmetric to cⁿ in the interval.



⊚D.L.Bricker, U. of IA, 1999

The shaded segments (""") can be eliminated from the interval of uncertainty:



@D.L.Bricker, U. of IA, 1999

 \mathbf{b}^{k-1}

Once the location of c° has been determined within the original interval of uncertainty $[a^{\circ}, b^{\circ}]$, the location of subsequent points is determined (by symmetry).

$$\begin{array}{c|c} & How should c^{\circ} be \\ Iocated within [a^{\circ},b^{\circ}]? \end{array} \end{array}$$

●D.L.Bricker, U. of IA, 1999

As is the case with Golden Section Search, this method begins each iteration with an interval of uncertainty [a,b] and one interior point c, and then inserts another interior point d which is symmetric to c.

In Fibonacci search, however, the ratio $\frac{c^n - a^n}{b^n - a^n}$

is not constant, but converges to $\frac{1}{2}$!

This requirement uniquely determines

$$\alpha = \frac{\mathbf{c}^{\mathbf{n}} - \mathbf{a}^{\mathbf{n}}}{\mathbf{b}^{\mathbf{n}} - \mathbf{a}^{\mathbf{n}}} = \frac{3 - \sqrt{5}}{2} \quad \forall \mathbf{n}$$
$$= 0.381966$$
$$\beta = 1 - \alpha = 0.618034$$

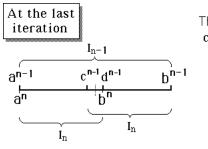
known to early Greek mathematicians as the "Golden Section" If a rectangle with ratio width:length = β is cut to yield a square, the other rectangle also has width:length = β eDL.Briver, units, units

Given: $[a^{1}, b^{1}] =$ initial interval of uncertainty $I_{k} = b^{k} - a^{k}$ $I_{n} = b^{n} - a^{n}$ = desired length of interval of uncertainty $\epsilon =$ "distinguishability constant" >0 (i.e., x & y are indistinguishable if $|x-y| < \epsilon$)

For ease of discussion, assume $I_1 = b^1 - a^1 = 1$

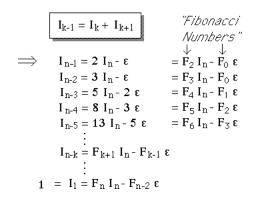
⊜D.L.Bricker, U. of IA, 1999

In general, we have



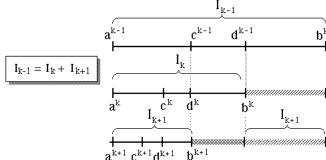
The final interval of uncertainty will be one of these two intervals

●D.L.Bricker, U. of IA, 1999



The distance between c^n and d^n will be ϵ

$$I_{n-1} = 2 I_n - \epsilon$$



●D.L.Bricker, U. of IA, 1999

Fibonacci Numbers	son of Bonacci ("Fib	onaco	:i")
L	1202 AD.	n	Fn
Rule for Generating	$\mathbf{F}_0 = \mathbf{F}_1 \equiv 1$	0	1
the Sequence:	$F_n = F_{n-1} + F_{n-2}, n \ge 2$	1	1
	1 H = 1 H + 1 H + 2 H + 2	2	2
	$F_2 = F_1 + F_0 = 1 + 1 = 2$	3	3
	5 1 0	4	5
	$F_3 = F_2 + F_1 = 2 + 1 = 3$	5	8
	$F_4 = F_3 + F_2 = 3 + 2 = 5$	6	13
	$F_5 = F_4 + F_3 = 5 + 3 = 8$	7	21
	15 - 14 + 13 - 5 + 5 - 5	8	34
		9	55
	•	10	89
⊜D.L.Bricker, U. of IA, 1999			

$$I_1 = F_n \; I_n \text{-} \; F_{n-2} \; \epsilon$$
 Solving for the "reduction ratio" $\frac{I_1}{I_n}$

 $\frac{I_1}{I_n} = \frac{F_n}{1 + F_{n-2} \epsilon}$

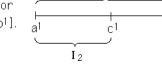
Given a desired reduction ratio, we can find $\,n,\,$ the required number of iterations.

⊜D.L.Bricker, U. of IA, 1999

Once we have determined n (the $\ensuremath{^\#}$ of iterations), we can compute

$$I_{2} = F_{n-1} \left[\frac{1 + F_{n-2} \varepsilon}{F_{n}} \right] - F_{n-3} \varepsilon$$
$$= \frac{F_{n-1}}{F_{n}} + \left[\frac{F_{n-1} F_{n-2}}{F_{n}} \right] \varepsilon$$

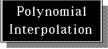
This will tell us where to put our initial interior point c^1 within $[a^1,b^1]$.



 I_1

h1

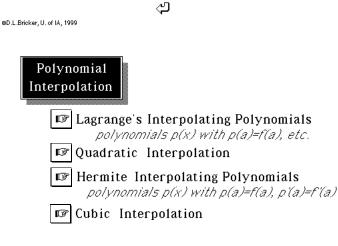
⊜D.L.Bricker, U. of IA, 1999



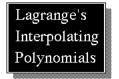
In quadratic & cubic interpolation methods, we use information about the function at two or more points to determine

a polynomial in agreement with the known information about the function f.

A minimum point is then computed for the interpolating polynomial to obtain a new point interior to the interval of uncertainty [a,b].



●D.L.Bricker, U. of IA, 1999



Assume that we are given the n+1 values { $x_0, x_1, x_2, \cdots x_n$ }

and function values $f(x_i)$,

What is the polynomial p(x) of degree n which agrees exactly with f(x) at the values x_i , i=0,1,2,...n?

●D.L.Bricker, U. of IA, 1999

●D.L.Bricker, U. of IA, 1999

Example

@D.L.Bricker, U. of IA, 1999

For example, suppose n = 11 and $~\epsilon \approx 0$

$$I_2 \approx \frac{F_{10}}{F_{11}} \approx 0.6180555$$

Throughout the remainder of the iterations, the other interior points are located to retain the symmetry of c^{k} and d^{k} .

PolynomialGiven informationQuadratica, f(a), b, f(b), c (a,b), f(c)Cubica, f(a), f'(a), b, f(b), f'(b)

@D.L.Bricker, U. of IA, 1999

Define

$$\mathcal{L}_{j}(\mathbf{x}) = \prod_{k \neq j} \frac{\mathbf{x} - \mathbf{x}_{k}}{\mathbf{x}_{j} - \mathbf{x}_{k}} = \frac{\mathbf{x} - \mathbf{x}_{0}}{\mathbf{x}_{j} - \mathbf{x}_{0}} \times \frac{\mathbf{x} - \mathbf{x}_{1}}{\mathbf{x}_{j} - \mathbf{x}_{1}} \times \dots \times \frac{\mathbf{x} - \mathbf{x}_{n}}{\mathbf{x}_{j} - \mathbf{x}_{n}}$$
Properties:

$$\begin{bmatrix} \mathcal{L}_{j}(\mathbf{x}) & \text{is a polynomial} \\ \text{of degree n} \\ \mathcal{L}_{j}(\mathbf{x}_{j}) = \mathbf{1} \\ \mathcal{L}_{j}(\mathbf{x}_{k}) = \mathbf{0} & \text{for } \mathbf{k} \neq \mathbf{j} \end{bmatrix}$$

That is, for each x_j we define a polynomial of degree n which is 1 at x_j but zero for x_k , $k \neq j$.

●D.L.Bricker, U. of IA, 1999

Hermite Interpolating Polynomials Assume that we are given the n+1 triplets of values $x_0, f(x_0), f'(x_0)$ $x_1, f(x_1), f'(x_1)$ \vdots

 $x_n, f(x_n), f'(x_n)$

We want to find a polynomial p(x) such that

⊜D.L.Bricker, U. of IA, 1999

Differentiating
$$\mathbf{p}(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{f}_{j} \mathbf{h}_{j}(\mathbf{x}) + \sum_{j=0}^{n} \mathbf{f}'_{j} \overline{\mathbf{h}}_{j}(\mathbf{x})$$

yields $\mathbf{p}'(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{f}_{j} \mathbf{h}'_{j}(\mathbf{x}) + \sum_{j=0}^{n} \mathbf{f}'_{j} \overline{\mathbf{h}'}_{j}(\mathbf{x})$

We would therefore like \mathbf{h}_{j} and $\overline{\mathbf{h}}_{j}$ to satisfy

$\mathbf{h'}_j(\mathbf{x}_k) = 0 \ \forall \ \mathbf{k} \boldsymbol{\&} \mathbf{j}$
$\overline{\mathbf{h}'}_{j}(\mathbf{x}_{k}) = \begin{cases} 1 \text{ if } k = j \end{cases}$
$\begin{bmatrix} n_{j} (n_{k}) \\ 0 \text{ if } k \neq j \end{bmatrix}$
L

@D.L.Bricker, U. of IA, 1999

Quadratic Interpolation Given: a, b, c and f(a), f(b), f(c)

The interpolating quadratic polynomial is

$$p(x)=f(a)\frac{x-b}{a-b}\times\frac{x-c}{a-c}+f(b)\frac{x-a}{b-a}\times\frac{x-c}{b-c}+f(c)\frac{x-a}{c-a}\times\frac{x-b}{c-b}$$

We want to find the minimum of this polynomial,

and so we will find x such that $\frac{dp(x)}{dx} = 0$

●D.L.Bricker, U. of IA, 1999

Lagrange's interpolating polynomial is

$$\mathbf{p}(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{f}(\mathbf{x}_{j}) \ \mathcal{L}_{j}(\mathbf{x})$$

This polynomial agrees exactly with the function f at $x_0\,,x_1\,,\,x_2\,,\cdots\,x_n$

i.e.,
$$\mathbf{p}(\mathbf{x}_k) = \sum_{j=0}^{n} \mathbf{f}(\mathbf{x}_j) \mathcal{L}_j(\mathbf{x}_k) = \mathbf{f}(\mathbf{x}_k) \forall k = 0, 1, 2, ... \mathbf{n}$$

●D.L.Bricker, U. of IA, 1999

Notation
$$f_i \equiv f(x_i)$$

 $f'_i \equiv f'(x_i) = \frac{df}{dx}(x_i)$

The polynomial p(x) will be of the form

$$\mathbf{p}(\mathbf{x}) = \sum_{j=0}^{n} \mathbf{f}_{j} \mathbf{h}_{j}(\mathbf{x}) + \sum_{j=0}^{n} \mathbf{f}_{j} \mathbf{\overline{h}}_{j}(\mathbf{x})$$

In order that $\mathbf{p}(\mathbf{x}_i) = \mathbf{f}(\mathbf{x}_i)$ \mathbf{h}_j and $\overline{\mathbf{h}}_j$ will satisfy
$$\begin{split} \mathbf{h}_j(x_j) &= 1 \\ \mathbf{h}_j(x_k) &= 1 ~\forall~ k {\neq} j \\ \overline{\mathbf{h}}_j(x_k) &= 0 ~\forall~ k \& j \end{split}$$

●D.L.Bricker, U. of IA, 1999

The following functions have the desired properties:

$$\begin{split} \mathbf{h}_{j}(\mathbf{x}) &= \begin{bmatrix} 1 - 2(\mathbf{x} - \mathbf{x}_{j}) \ \mathcal{L}'_{j}(\mathbf{x}_{j}) \end{bmatrix} \mathcal{L}_{j}^{2}(\mathbf{x}) \\ &\overline{\mathbf{h}}_{j}(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_{j}) \ \mathcal{L}_{j}^{2}(\mathbf{x}) \end{split}$$

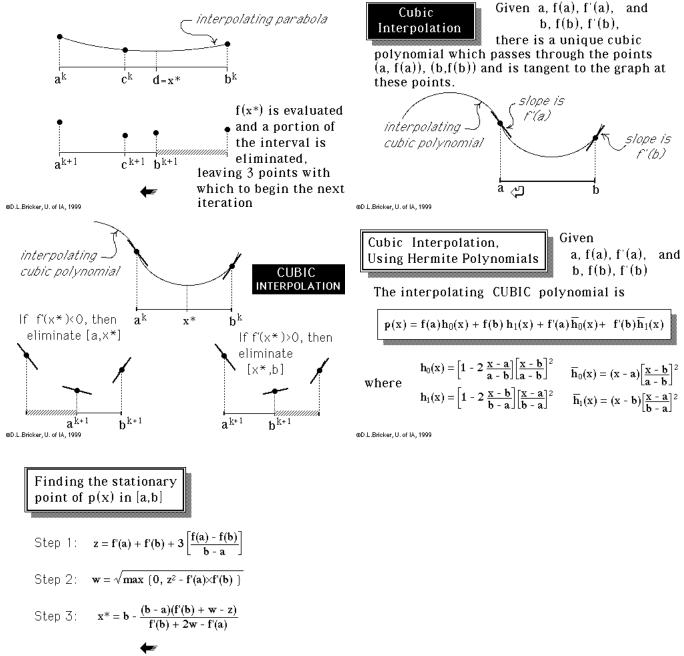
●D.L.Bricker, U. of IA, 1999

$$\frac{dp(x)}{dx} = \frac{f(a)}{(a-b)(a-c)}(2x-b-c) + \frac{f(b)}{(b-a)(b-c)}(2x-a-c) + \frac{f(c)}{(c-a)(c-b)}(2x-a-b) = 0$$

$$\Rightarrow \left| x^* = \frac{1}{2} \frac{f(a) (b^2 - c^2) + f(b) (c^2 - a^2) + f(c) (a^2 - b^2)}{f(a) (b - c) + f(b) (c - a) + f(c) (a - b)} \right|$$

Having located this 4^{th} point (call it d), evaluate f(d) and proceed as in Golden Section or Fibonacci search, eliminating a portion of the interval [a,b]

●D.L.Bricker, U. of IA, 1999



@D.L.Bricker, U. of IA, 1999