

TREES

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu

T R E E : a connected graph without cycles

©D.L.Bricker, U. of Iowa, 1998

The following statements about a graph G are equivalent:

- G is a tree
- G is connected with n vertices and $n-1$ edges
- G has n vertices, $n-1$ edges, and no cycles
- G is such that each pair of vertices is connected by a *unique* elementary chain

©D.L.Bricker, U. of Iowa, 1998

Spanning tree

A spanning tree of a connected graph $G=(V,A)$ is a tree with vertex set V and an edge set which is a subset of A

Minimum spanning tree

A minimum spanning tree of a *network* is a spanning tree the sum of whose edge lengths are minimal.

©D.L.Bricker, U. of Iowa, 1998

Two algorithms for MST problem:

Prim's Algorithm

Beginning with a single node, at each iteration a tree is obtained by adding an edge & node, until ALL nodes have been included.

Kruskal's Algorithm

Beginning with N trees, each consisting of a single node, at each iteration two trees are combined by adding an edge, until a single tree is obtained.

©D.L.Bricker, U. of Iowa, 1998

Finding a Minimum Spanning Tree (MST) of a Network (Prim's algorithm)

Step 1 (Setup)

Select any node to begin the tree

Step 2 (Addition)

Find a node NOT currently in the tree which is nearest to the set of nodes IN the tree.

Add that node and the connecting edge to the tree

Step 3 (Stopping criterion)

If all nodes are in the tree, STOP; otherwise return to step 2

©D.L.Bricker, U. of Iowa, 1998

Example: Prim's algorithm for MST

©D.L.Bricker, U. of Iowa, 1998

Initially, the tree is empty.
Select (arbitrarily) node A to add to the tree.

©D.L.Bricker, U. of Iowa, 1998

Find the node which is nearest to the nodes of the tree (i.e., node A)
This is node G.
Add it (and edge [A,G]) to the tree

©D.L.Bricker, U. of Iowa, 1998

Find the node in the set $\{B, C, D, E, F\}$ (not in the tree) which is nearest to the nodes $\{A, G\}$ which are in the tree.

In this case there is a tie!

Break the tie arbitrarily, by selecting node C.

Add node C (and edge $[A, C]$) to the tree

©D.L.Bricker, U. of Iowa, 1998

Find the node from the set $\{B, D, E, F\}$ (not in the tree) which is nearest to the nodes $\{A, C, G\}$ (in the tree)

This is node B, a distance 5 from the tree.

Add the node B (and the edge $[B, C]$) to the tree

©D.L.Bricker, U. of Iowa, 1998

Find the node from the set {D,E,F} which is nearest to the set of nodes in the tree, {A,B,C,G}.

This is node F, a distance of 6 from the tree.

Add node F (and edge [F,G]) to the tree

©D.L.Bricker, U. of Iowa, 1998

Find the node from the set {D,E} which is nearest to the nodes in the tree, {A,B,C,F,G}.

This is node E, a distance of 5 from the tree.

Add node E (and edge [E,F]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

Find the node from the set {D} which is nearest to the nodes {A,B,C,E,F,G} in the tree.

This is node D, a distance of 5 from the tree.

Add node D (and edge [D,E]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

All nodes are now in the tree, so we stop!

©D.L.Bricker, U. of Iowa, 1998

Example:

Alaska Gas Transmission Company is planning to construct a pipeline to supply gas from Alaska's north slope ("NS") to eight U.S. gas companies, denoted by A through H.

Each mile of "right-of-way which is purchased costs an average of \$1000.

How should the pipeline be routed to minimize the total cost of the right-of-way?

	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

©D.L.Bricke, U. of Iowa, 1998

	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Arbitrarily select a node to begin the tree.

Let's choose node NS.

©D.L.Bricke, U. of Iowa, 1998

		non-TREE								
TREE		NS	A	B	C	D	E	F	G	H
NS		0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32	
B	43	12	0	18	12	11	32	26	28	
C	41	15	18	0	10	14	23	15	18	
D	44	16	12	10	0	5	22	13	16	
E	45	17	11	14	5	0	23	15	12	
F	53	31	32	23	22	23	0	7	14	
G	56	25	26	15	13	15	7	0	8	
H	61	32	28	18	16	12	14	8	0	

Find the minimum distance from a node NOT in the tree to the node IN the tree.

This is node A.

Add node A (and edge [NS,A]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

		non-TREE								
TREE		NS	A	B	C	D	E	F	G	H
NS		0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32	
B	43	12	0	18	12	11	32	26	28	
C	41	15	18	0	10	14	23	15	18	
D	44	16	12	10	0	5	22	13	16	
E	45	17	11	14	5	0	23	15	12	
F	53	31	32	23	22	23	0	7	14	
G	56	25	26	15	13	15	7	0	8	
H	61	32	28	18	16	12	14	8	0	

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node B, a distance of 12 from node A.

Add node B (& edge [A,B]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE.

TREE →

NS	A	B	C	D	E	F	G	H	
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node E, a distance of 11 from node B.

Add node E (& edge [B,E]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE.

TREE →

NS	A	B	C	D	E	F	G	H	
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node D, which is a distance 5 from node E.

Add node D (& edge [D,E]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE:

TREE	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node C, a distance of 10 from node D.

Add node C (& edge [C,D]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE:

TREE	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node H, a distance of 12 from node E.

Add node H (& edge [E,H]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE:

	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node G, a distance of 8 from node H.

Add node G (& edge [G,H]) to the tree.

©D.L.Bricker, U. of Iowa, 1998

non-TREE:

TREE	NS	A	B	C	D	E	F	G	H
NS	0	32	43	41	44	45	53	56	61
A	32	0	12	15	16	17	31	25	32
B	43	12	0	18	12	11	32	26	28
C	41	15	18	0	10	14	23	15	18
D	44	16	12	10	0	5	22	13	16
E	45	17	11	14	5	0	23	15	12
F	53	31	32	23	22	23	0	7	14
G	56	25	26	15	13	15	7	0	8
H	61	32	28	18	16	12	14	8	0

Find the node NOT in the tree which is nearest to the nodes IN the tree.

This is node F, a distance of 7 from node G.

Add node F (& edge [F,G]) to the tree.

The tree now spans all nine nodes, and is the Minimum Spanning Tree.

©D.L.Bricker, U. of Iowa, 1998

APL code for Prim's MST algorithm

```

∇TREE←MST C;IN;OUT;K;L;ROWMIN;MIN;J
[1]   ⍝
[2]   ⍝ Compute Minimum Spanning Tree of a graph
[3]   ⍝
[4]   IN←1                   ⍝ List of nodes in tree
[5]   OUT←1+⍳-1+1↑⍴C         ⍝ List of nodes not yet in
[6]   TREE←(⍴C)⍴0
[7]   LENGTH←0
[8]   ⍝ Find shortest arc joining IN & OUT nodes
[9]   NEXT:ROWMIN←1/C[IN;OUT]
[10]  MIN←1/ROWMIN
[11]  J←ROWMIN↑MIN
[12]  ⍝ Add arc from IN node (K) to OUT node (L)
[13]  K←IN[J]
[14]  L←OUT[C[K;OUT]↑MIN]
[15]  TREE[K;L]←1
[16]  OUT←(L≠OUT)/OUT
[17]  IN←IN,L
[18]  LENGTH←LENGTH+MIN
[19]  →NEXT IF (⍴IN)<1↑⍴C
    ⍝

```

©D.L.Bricker, U. of Iowa, 1998

JAILBREAK!

- Prisoners have been divided into seven groups by walls

- An outside accomplice plans to help them to escape by blowing up some of the gates, using explosives

HOW CAN HE DO THIS,
DESTROYING AS FEW
GATES AS POSSIBLE?

©D.L.Bricker, U. of Iowa, 1998

Represent each room, together with the "outside world", by a node, and each gate by an edge.

The problem is to find a spanning tree with the fewest edges!

©D.L.Bricker, U. of Iowa, 1998

The number of nodes is 8.

All spanning trees will have seven edges!

©D.L.Bricker, U. of Iowa, 1998

Kruskal's Algorithm for MST

Step 1: Setup

Let $G_0 = (V, \emptyset)$ and $i=0$

Step 2: Addition of Edge

Find (x,y) which minimizes $w(x,y)$, and set $w(x,y) = +\infty$

Step 3: Test for cycle

If the addition of edge (x,y) to the graph G_i would form a cycle,
then go to step 2;

Otherwise, add edge (x,y) to graph G_i and increment i .

Step 4: Test for termination

If $i < n - 1$, then return to step 2.

Otherwise, stop with $G_{n-1} = \text{MST}$

©D.L.Bricker, U. of Iowa, 1998

Example (Kruskal's MST Algorithm)

i	Edges in G_i
0	none
1	AG
2	AG, BC
3	AG, BC, DE
4	AG, BC, DE, EF

In each of the first 4 iterations, there is a tie for the minimum-length edge to be added

©D.L.Bricker, U. of Iowa, 1998

i	Edges in G_i
0	none
1	AG
2	AG, BC
3	AG, BC, DE
4	AG, BC, DE, EF

Next, there is a tie
between edges FG
and AC

©D.L.Bricker, U. of Iowa, 1998

i	Edges in G_i
0	none
1	AG
2	AG, BC
3	AG, BC, DE
4	AG, BC, DE, EF
5	AG, BC, DE, EF, FG
6	AG, BC, DE, EF, FG, AC

Since $i=6 = n-1$, we
terminate.

©D.L.Bricker, U. of Iowa, 1998

Example (Kruskal's MST Algorithm)

A network with
15 nodes:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

We begin with 15 "trees", each consisting of a single node:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

edges sorted according to length

The two trees consisting of nodes 8 & 9 are joined, so that we now have 14 trees:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Next, edge (5,6) is added, which joins two trees, resulting in only 13 trees:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (6,7) is next added, combining two trees (one with 2 nodes, the other with one), giving us 12 trees:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (7,8) is added, combining trees {5,6,7} and {8,9}, giving us only 11 trees:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

If edge (5,7) were added, a cycle 5-7-6-5 would be formed, and so we "skip" this edge.

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (3,4) is added next, reducing the number of trees to only 10:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (7,12) is added, reducing the number of trees to nine:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (14,15) is added, reducing the number of trees to eight:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge (10,11) reduces the number of trees to seven:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge (5,9) would create a cycle (5-9-8-7-6-5) and so we don't add this edge.

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge (6,12) also would create a cycle (6-12-7-6), and so we don't add this edge:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge (13,14) doesn't create a cycle, and so we add this edge, reducing the number of trees

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (12,13) is added, reducing the number of trees to five:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Edge (2,3) is added next, reducing the number of trees to four:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Next we add edge (11,12), to obtain three trees:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge (6,13) would form a cycle, so we skip it:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricker, U. of Iowa, 1998

Adding edge $(10,12)$ would form a cycle, as would edge $(2,4)$:

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricke, U. of Iowa, 1998

The next edge to be added is $(1,2)$, which leaves us with only two trees!

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57

©D.L.Bricke, U. of Iowa, 1998

Finally, adding edge (2,6) leaves us with a single tree, spanning all of the nodes!

i	j	d _{ij}
9	8	6
5	6	8
7	6	9
8	7	12
5	7	14
3	4	15
7	12	16
15	14	16
10	11	17
5	9	18
12	6	18
14	13	20
12	13	24
3	2	25
12	11	26
13	6	30
12	10	33
4	2	35
1	2	36
6	2	37
12	15	40
4	5	46
11	15	50
1	3	57