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: one city must |
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[]=
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2. Xi=1forj=1,..n |esecriymust |
i=1 1 ’ precede cily j

X, €{0,1} for all i,

These are the constraints of
the assignment problem!|
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Not all feasible solutions of the assignment
problem (AP) are TSP tours!

Whal consirainls

............................................................................................... s B meddodd £
AF in order o
eliminzgle the
sifrtours ?

A

Introduce new wvariables wu;,1=1, 2, ..n
IFor each pair of cities (i,j), i=], add the constraint

Ui -y e nX;on -1

Mhese constraints will eliminate subtours,

For exarmple: X,=-X,=X,=-1>
U, - U+ H<4
Uz-Us+ D4
Us- U+ H5<4
Suin: 15 < 12 |infeasibles|
QAL

Rargrance: Mifler, Tuckear, & Jemfvn LA0N Vol Jr7980i pn 30607
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These new constraints eliminate subtours of
fewer than n cities, but NOT tours of n cities:

Let wu;=sequence # in which city 115 visited.
$o,if X =1, wehave u;-u;=--1

and 50 vy - u;+ nXy = -1+ n

n -1 15 satisfied!

|

1.e., U; - U+ nXij

A

Dimensions of model:

n(n—=1)  integer variables X;;

n continuous variables U,

2N assignment constraints

nin-=1J subtour elimination constraints
n (#cities) ) 10 o0 100
variables

0-1integer 20 a0 2450 9900
continuous 5 10 50 100

constraints S0 110 2520 10100
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Another set of subtour elimination constraints:

Let S be anontrivial subset of the cities.,

insures that there is an edge in the |
Z Z Kij L tour which links set S to the set of
15 JES cities NOT in S,

I we include such a constraint for every nontrivial
subset, we eliminate all subtours,

For example, if 5 1s the set of cities on a subtour,
the constraint 1s violated!

Reference: Dantzig, Fulkerson, & “JQEF%DJ OR. %ol 7(1959) pp S&ff

’ﬁ The subtour efimination

&) constraint is violated,
Since

xm :}’{51 :EEJ =X :K42:><:52:><:E-2:><?2::}<43::}<53:KE-SZKT-'E:O
o



TSP.models 11/4/97

Unfortunately, the number of such constraints
is exponential in the number of cities ( 2"- 1)

n {(#cities) 5 10 50 100

subtour
climmination 31 1024 1.126x10' 1.268x103°

constraints

A

Another set of subtour elimination constraints

For every nontrivial subset =,

where |S|  is the cardinality of the set S

The number of such constraints is again 2" - 1

A
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X X Xy <[5]-1=
ies jes

”5 The subtour elimination
)

consiraint is viofafed,

since there gre lthree edges
n Lhe subiour

A

Summar)y: Subtour Elimination Constraints
(i fe gnpended fo the gssigrment probiem)

for all subsets 5 of the
nodes

for all subsets 5
| of the nodes

for all edges (i,j)
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Warning! |

While subtours are eliminated by any
of the three sets of constraints,

the smaller set of constraints, 1.e.,

 for all edges (i,j)

vields a much wegker lower bound
in an LP relaxation!

A

One-Tree Constraint

A TSF tour is a special case of a "one-tree”, which
15 & spanning tree with one additional edge included
(creating a circuit),

one-tree —
«— tree \
L/ EK:
QAL
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Let T, denote the set of all one-trees of the
network, so that  XeT, if ¥ i5 a one-tree.
Then the constraint

will eliminate subtours, since spanning one-trees
are connected!

A

2-commodity flow model |

2 full,

3 full, ;’Q\Eemm Suppose that the salesman
temety delivers a full container of

i some commodity (for example,

E‘Z”nl]p’tu 3 empty bottled gas), and picks up an
empty container, for each
SOUFEE o full, customer.
dempty

AL all times, he will hawve a
total of {(n—-1) containers
(full plus empty ) in his vehicle.

A
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Define two sets of continuous variables
( one for flow of full containers, and one
for flow of empty containers),
nlus one set of binary wariables.

“T’ = flow of full containers in edge (i,])

“T’ = flow of empty containers in edge (i,j)

X, if edge (i,j)is on the route |
CJ otherwise

A

, (Faese quaranioe 5 ot o sowce {0 50k
Constraints O & & el 0ally, SIITIRELING SUOLOUrES

{ r—1 for i=source
-1 elsewhere

*T*P >0 carnservalion of How for full coniginers

N0 _ [=(n=-1) for i=source
ZHT;U B l::zﬂwki _{ + ]

elsewhere

"T’.G ) conrservalion of flow for emply coriginers
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Since the total flow in each edge of the tour
15 n-1, we also have:

5Tf]-ll:-m + T]]D = [ﬂ—1]x1j

for each edge (i,])

That is, if £;; =0, no flow is permitted in edge (i,])
while if Pi]-j =1, the total flow 15 n-1

A

Objective

- n n 0
Minimize m121 121 Cijhiy + |3/]]z1 1210” {VUF‘I”]}

where o+p=1, o0 & B0

For example (a=1,p=0): | Minimize Z ZC”K”

o=0, p=
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This model easily incorporates

Precedence constraints |

Suppose city h must precede city k on the tour,
Then the number of "full containers” entering city h
must exceed the number of "full containers” entering
city K

A

(n=1) commodity flow model |

For each city k (other than the source s), we
define a commodity:

‘T’i?‘ = flow inarc (i,j) of commodity destined for k

A
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Constraints

Conservation of flow for each commodity k.

Lk

E{‘%j =1 at source s
n |{ | |_{
i;{“’l’fih =]—Z]\fhj at hiS, b=k

| Nk
1§1 V]R =1 & ; Rl"'lk] ={) at destination k

A

Capacity constraints

for each arc (i,j)

Assignment constraints

=] for all i

1l
2
é}{ij =1 forall ]

________________

>

A
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The feasible region of the (P
relaxation of the (n—1)-commodity
flow model is the same as that of
the model with exponentially many
subtour elimination constraints!

However, basic feasible solutions
of this LP may be fractional, as in
the following example.

A

ouppose that Xy = Y, for each edge below,
except for edge (5,s), where Xg = 1.

Then ® 1sabasic
feasible solution to
the LP relaxation of
the assignment &
subtour elimination
constraints.

Can constraints be added to eliminate
this solufion? <\
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Mutual Flow Constraints”

The 1aliowing nin— 7 S constrainis will
ST IIEIE T8 [V IGNS So/iiTion.

for each pair i,k (j#k)

(either commoadille 7 ITows Lhrough node £, or
SOOIl & fTows through node § oul nol bolhll

A
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Solutions of a large scale traveling salesman problem

Operations Research, Volume 2 (1954), pp. 393-410

subtour elimination constraints
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n(n-1)/2 subtour elimination constraints

subtour elimination constraints
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Kusiak, Andrew and Finke, Gerd

Modeling and solving the flexible forging module scheduling
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Engineering Optimization, Volume 12 (1987), pp. 1-12

2-commodity flow model of TSP
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Wong, Richard T.

Integer programming formulations of the traveling salesman
problem

Proceedings of IEEE International Conference on Circuits &
Computers, 1980

multi-commodity flow model
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Claus, A.

A new formulation for the travelling salesman problem

SIAM J. Alg. Disc. Meth., Volume 5, Number 1 (March 1984), pp.
21-25

multi-commodity flow model
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