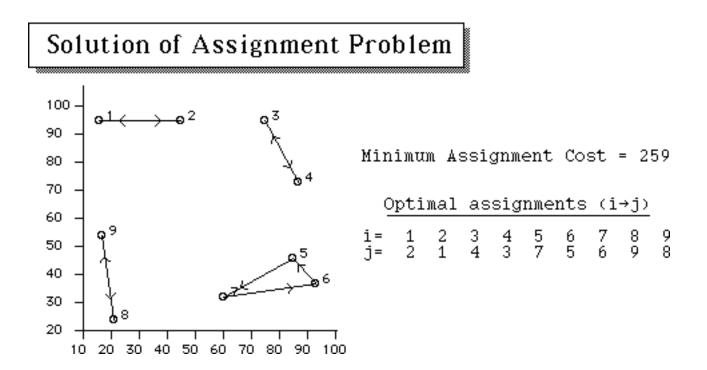
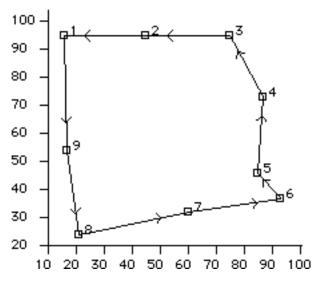

$$\begin{array}{ll} \text{Minimize } \sum\limits_{i=1}^{n} & \sum\limits_{j=1}^{n} & d_{ij}X_{ij} \\ \text{subject to} \\ & \sum\limits_{i=1}^{n} & X_{ij} = 1 \ \forall \ j=1,\ldots n \\ & \sum\limits_{j=1}^{n} & X_{ij} = 1 \ \forall \ i=1,\ldots n \end{array} \right\} \begin{array}{l} \text{Assignment } \\ \text{Assignment } \\ \text{constraints} \\ & \text{Constraints} \\ & X_{ij} \in \{0,1\} \quad \forall \ i,j \end{array}$$

Relaxing the subtour elimination constraints, we are left with an assignment problem, whose solution provides us with a *lower bound* on the length of the optimal tour!

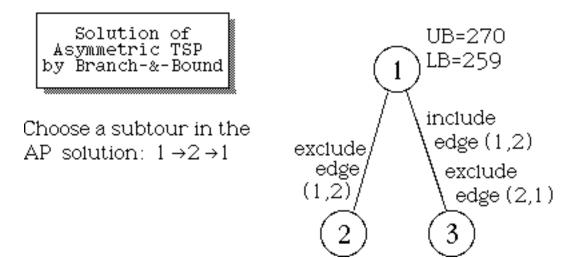

$$\begin{array}{ll} \text{Minimize} & \sum\limits_{i=1}^{n} & \sum\limits_{j=1}^{n} & d_{ij} X_{ij} \\ \text{subject to} & & \\ & \sum\limits_{i=1}^{n} & X_{ij} = 1 \ \forall \ j {=} 1, \ldots n \\ & & \\ & \sum\limits_{j=1}^{n} & X_{ij} = 1 \ \forall \ i {=} 1, \ldots n \\ & & \\ & & X_{ij} {\in} \{0,1\} \ \forall \ i,j \end{array}$$

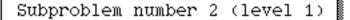
©Dennis Bricker, U. of Iowa, 1997






©Dennis Bricker, U. of Iowa, 1997





## Applying Heuristic Algorithm

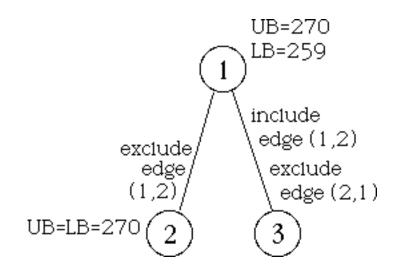
>>>New incumbent has been found, with length 270 Tour= 1 9 8 7 6 5 4 3 2 1



©Dennis Bricker, U. of Iowa, 1997






Edges excluded

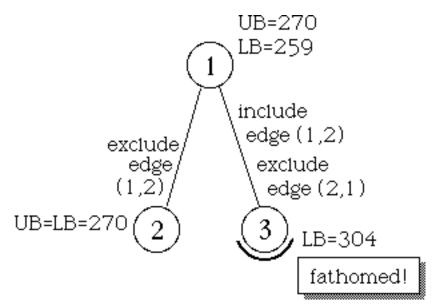
Minimum Assignment Cost = 270 (≥ incumbent = 270)

| Optimal |   |   | l as | assignments |   |   | (i | (i→j) |   |       |
|---------|---|---|------|-------------|---|---|----|-------|---|-------|
| i=      | 1 | 2 | 3    | 4           | 5 | 6 | 7  | 8     | 9 | Tour! |
| j=      | 9 | 1 | 2    | 3           | 4 | 5 | 6  | 7     | 8 |       |

(same as incumbent found by the heuristic algorithm)

©Dennis Bricker, U. of Iowa, 1997




| Subpro | blem numl | per 3 | (level         | 2) |  |  |  |
|--------|-----------|-------|----------------|----|--|--|--|
| Edges  | included  | Edge  | Edges excluded |    |  |  |  |
|        | 1<br>2    |       | 2<br>1         |    |  |  |  |

Minimum Assignment Cost = 304 (≥ incumbent = 270)

| ō        | as     | assignments (i→j) |  |        |  |  |  |        |        |
|----------|--------|-------------------|--|--------|--|--|--|--------|--------|
| i=<br>j= | 1<br>2 | 2<br>4            |  | 4<br>3 |  |  |  | 8<br>9 | 9<br>8 |

Not a tour, but Lower Bound (304) exceeds incumbent!

©Dennis Bricker, U. of Iowa, 1997



The incumbent must be optimal!