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Contents |

~| Formulation as a Linear Programming Problem

| Dijkstra's Labelling Algorithm

| Flovd's Algorithm

| Applications

@D .L.Bricker, . of lowa, 1998

Forrmulation of the Shortest-Fath Froblem

as a linear prograrnming problem:

Exarmple: Find the shortest
path from node 1 to node
4 where distances are as
glven.

Minirnum-Cost Network Flow Model:
Let the unit "shipping cost"= djj for arc (i,j)
source node * 1 supplies 1 unit.
sink node *4 requires 1 unit

&
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Minirnize dy ;257 dygi 5 702383702404 Td3akay

subject Lo (- Ko -~ Hg = -1

+ ¥ - X - A = 0
IPmodel | e = - -

+ 8z + Hog - Hzq U

X +Hpy +Hg, = *1

X2 O foreacharc (i)

@D .L.Bricker, . of lowa, 1998

Minimize dy, 2ot d g 3 Hdzaiastdaaiiza tdsaiiag

subjectto (- ¥, -5 .
+ - - —_

LPmodal | Hiz Haz  ~ Haa = 0

: iz + Hog - ¥y = O

~ +tHoq +tHg, =+l

X2 O foreacharc (i)
Mazxirnize -, +y7,

subject to - v, +3%, ¢ dy,
, - N < d13
ALE | -V TV ¢ dpz
RE *Yy ¢ Ozq
-y, * Yy ¢ dag

(v; unconstrained in sign)
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The algorithrn which
Mazimize ¥, - v, will be presented will find
subject to primal variables  ( Xy
Vo & oyt dis and dual variables [ v, )
¥z i v+ dig which are:
Vi & Vot dos e cach feasible
v, < . d e satisly complementary |
4 Y2t g slackness conditions |
Ya 2 Vgt day (This will uarantee
(v; unconstrained in sign) optimality!

@D .L.Bricker, . of lowa, 1998

Dijkstra's Shortest-Path Algorithm |

Assume no negative-length cycles exist in the network.

To find: the shortest path from node s to each of the other nodes
Lakbel each node | with two labels:

d(j) = length of shortest path from node s to node | passing
through permanently-labelled nodes only

pli) = immediate predecessor to node | in the path from node s.

At any stage of the algorithm, the Tabel of each node is either
temporary or permanent

&

@0 L.Bricker, L), aof lowa, 1998



Shortest Path 8/26/98 page 5

Dijkstra's Shortest-Path Algorithm

step 0: Imtially, give node s permanent labels

d(s) = 0 and pi(s) =&
and give all other nodes temporary labels

d{j) = +eo and plj) = &

Step 1: Let k = node whose labels were most recently

made permanent.
For every node j linked to node k and having

temporary labels, update the labels:

d(j) = minimum { d(j), d(k) + dyi}
and, if d[j]=d[|{]+dk]— , then pljl=k

@D .L.Bricker, . of lowa, 1998

Step 2: Make permanent the label of the node having
smallest d(j)

If some labels are temporary still, return to
step 1; otherwise, stop.

@0 L.Bricker, L), aof lowa, 1998
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Justification for step 2 |

sUppose node ¥ has Lhe smallest termporary label.

d(x) = shortest length of any path from node s to node x,
using only intermediate nodes with permanent labels.

The shortest path from node s Lo node ¥ which includes some
node v with temporary label must be > diy)+dyy > diz)

Therefore, we can rake the label of node ¥ permanent.

@D .L.Bricker, . of lowa, 1998

Example |

% %

Details Solution

@0 L.Bricker, L), aof lowa, 1998

Find the shortest paths from node a toall other nodes.

page 6
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Jetptar kT

!

0

We start by assigning the initial labels (0 for node a, +ee otherwise)

[ & box around plj) will indicate that the label is permanent.)

@D .L.Bricker, . of lowa, 1998

MNext, we update the labels on nodes b, ¢, and d;
dlb) = rinimum { ee, 0+3} = 3
dlc) = minirnurn { ee, 0+3} = §
d(d) = ruinimum { ee, 0+5} = 5
In each case, the predecessor label will indicate node a.

@0 L.Bricker, L), aof lowa, 1998
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(We'll indicate the predecessor label using a bold arrow
) =3

MNext we select a temporary label Lo be made permanent.
This will be the label of node b, since it has the srnallest temporary
label,

@D .L.Bricker, . of lowa, 1998

/——'9' 3 + oo +oo

SRR

Next, we update the labels of nodes c and §:
dic) = minitmuam {8, 2+5 = 8 & d(f) = minimum { ee | 2+71=10

@0 L.Bricker, L), aof lowa, 1998



Shortest Path 8/26/98 page 9

>

Jetptar kT

MNext step is to chioose the temporary label to be made permanent.
This will be the label of node d, which is the smallest temporarsy
label.

@D .L.Bricker, . of lowa, 1998

Next we update the temporary labels of the neighbors of node d:
dlc) = minimum {8, 5+21= 7 & dig) = minirmum { ee , 5+4} = 9

@0 L.Bricker, L), aof lowa, 1998
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The next temporary label to be made permanent is that of node ¢

@D .L.Bricker, . of lowa, 1998

pdate the label of nodes & and f:
die) = minimum {ee , 7+81=15 and 4(f) = minirmum{1 0, 7+5}=10

@0 L.Bricker, L), aof lowa, 1998
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Next, we select the smallest temporary label (that of node g) and
make it permanent.

@D .L.Bricker, . of lowa, 1998

e next update the temporary labels of nodes e and i
die) = minirmum {15, 9+61=15 and dii) = minimurm { eo |, O+4}=13

@0 L.Bricker, L), aof lowa, 1998
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We next rnake the label of node { permanent.

@D .L.Bricker, . of lowa, 1998

Update the temporary labels of nodes e and b
dle) = minimum {15, 10+5}=15  and dih)=rin{ ee , 10+6}=16

@0 L.Bricker, L), aof lowa, 1998
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Choose the next temporary label Lo be made permanent. This
will be that of node i,

@D .L.Bricker, . of lowa, 1998

Update the temporary labels of nodes e and j:
diel =min{l5, 13+1}=14 & dljl=rmin{ ee,k 13+6}=19

@0 L.Bricker, L), aof lowa, 1998



Shortest Path 8/26/98 page 14

MNext, choose the temporary label of node & to be made permanent.

@D .L.Bricker, . of lowa, 1998

Update the temporary labels of node b
dih) = minirmam{l6, 14411 =15

@0 L.Bricker, L), aof lowa, 1998
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Choose the temporary label of node b to be rnade permanent.

@D .L.Bricker, . of lowa, 1998

Update the temporary label of node §:
di) = minimum{l 9, 15+2}=17

@0 L.Bricker, L), aof lowa, 1998
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Finally, we select the label of node j to be made permanent.

since no temporary labels remain, the algorithm terminates.

@D .L.Bricker, . of lowa, 1998

The predecessor labels (indicated by the bold arrows above)
allow Us to "trace back” the shortest path.

For example, the shortest path to node jis: a-d-2g2rize2h 2

J

@0 L.Bricker, L), aof lowa, 1998
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The distance labels which
we have computed,

ie, y =d(j)
are feasible in the dual LP Mazimize ¥, -V,
subject Lo
Y2 & Wt dy;
¥z i v+ dig
Yz & Vet diz
Yot Wt dag
Ya 5 Vgt day

(v, unconstrained in sign)

@D .L.Bricker, . of lowa, 1998

1 if edge (i,j)is on
If we define H,-j = the shortest pathto t
0 otherwise

then X 1s feasible in the primal LP

Minimize dy,d+d; s 5 deziaztdaatipg tdzeisy

subject to E K, —Hig = -
JRR T - Hpz T Hpg = 0

t Az + Hps “Hzy = U

X +Hzq tHgy = tl

Hij2 O foreacharc (ij]

@0 L.Bricker, L), aof lowa, 1998
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Complementary slackness conditions are satisfied,
l.e,

If H]] }D, then }l"] = ¥ +dij

Complementary Slackness Theorem gy
qguarantees that

X is optimal in the primal LP

Y is optimal in the dual LP

@D .L.Bricker, . of lowa, 1998

VL« DIJESTRA D;P;T;H;TL; PRED;1ter

Dijkstra's algorithm for finding the shortest path
from ¥ to all other nodes
(o from VI11 to WLZ21 1f Z=pV¥2
Eeturns result:
Ll1;1 ohortest path lengths
LLZ;1] Predecessors on shortest path

0K IF a/fa Dz
"Error: Distance matrlx 1s not non-negative!
Lev < =0

OE : T« He1TpD < Wel, 0 < PRED+Np0O ¢ TL+L+NpBIG
LIP<YI111+0 < lter<l

]
]
]
]
]
]
1 HNEXT:=FINIS IF Q=pT«(T#P)/T
]
]
]
]
]

DD DD IDDD

R D

[cLLl] [T1x211+ . '

PeT[1T4LITITLIT]] Dijkstra's

SNEXT IF PAVIZ) Algorithm

FI HI 5 : L{_ L L] [ [:I [ ] 5 ] PRED e
W
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APL Code for |
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Identifving the shortest path,
given the predecessor labels

YPATH+Y DIJESTEAAPATH PRED;I
A
A Find shortest path to node VW,
A giwven predecessor list comnputed by
A the function DIJESTEL

F
PATH+V

NEXT :¥<PREDL1TWV]1,V¥
=NEXT IF O#£1TV

PATH+11¥

o W e B e B e B e B e B o B o B o T e B o |
= 000 -] O s O
|l I S R R S R Ny B B e

| Iy .

@D .L.Bricker, . of lowa, 1998

Flovd's Algorithm for Shortest Paths

Assume no negative-length cycles exist in the network.

To find: the shortest path between each pair of nodes

Triangle operation |

Givenan nxn distance matrix D = {dij}J a trangle operation for a
fixed node k is:
d;

j*’r min{dij,dik+ dh:j} forall 1,7=1, .n but 1,] =k

Theorem [ |f we perform atriangle operation on the distance
matrix for successive values of k=12, .n,
cach entry dij becomes eqgual to the length of the shortest path

fromito]. Qﬂ
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Triangle operation |

Givenan nxn distance matrix D = {dij}J a triangle operation for a
fixed node k is:

Theorem || |f we perform atriangle operation on the distance
matrix for successive values of k=12, .n,

cach entry dij becomes equal to the length of the shortest path
fromito].

@D .L.Bricker, . of lowa, 1998

Justification for Floyd's Algorithm |

After the triangle operation for step k, is performed,

d; i= length of shortest path from i to j with only intermediate
nodes k <k,

Proof (by induction): Assume true for k-1
Consider triangle operation for k.
djj = minimurmi dij: d“fn+ dkni 1
If the shortest path from i Lo j using only intermediate nodes
1,2, . kpdoes not pass through kg, then d; jis unchanged by
this operation, and d; j will still satizsfv the above property for k,
Otherwise, d]-j = djkn"' dk,:,i and since dikn e dk,z,i each satisfv the
property, dig,* dkn" will satisfv the property.
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APL Cods for Floyd's Algorithm |

VDAFLOYD D;K;E:;N;P;:RE

H

-2 -4 -2 - 4

H
PemipDipuNel1TpD
E+1

NEET :DA«DLDL ; K1« .+D[K ;]

Pei(cpDipPLE ;1 x~EQ) +PxEQeD=Da

De=TiA
PLE ;K10
END_LOOP:=NEXT IF NzE<EK+1

Da=DA,[D.51F
W
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T —

a0 —

20 —

4001 —

20 4

20

| | | | I | | | |
o 10 20 30 40 30 &0 V0 30 20 100

@0 L.Bricker, L), aof lowa, 1998

MMk |[E 0 R

FLOYD'S SHORTEST PATH ALGORITHHM
I 1z distance matrix

P is predecessor natrlx

DA 15 matrix of shortest path lengths
between every palr of nodes

|DIST&NEE HﬁTEH{I

1 2

to

3

4 G

5}

n 48
48 0
Q93 23
G4 999
Q93 999
L S

999
a3

26
21
Q99

B4 999 54
qg99 999 28
26 31 999

0 24 999
24 0 999

999 999

1]
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e
FLOYD'S |
ALGORITHM | 60 - \
S0 —
Z
S
40 —
Path Lengths 30 Predecessors
&
I 20 T T T T T T T T 1 T
g t—I:l 0O 10 20 20 40 530 &0 70O 20 290 100 I ti:'
Sl1 2 3 4 5 &6 ol 234558
1] © 43 71 64 93 54
2148 0 23 49 54 28 % g % % % 3 %
F|171 23 0 26 31 51 Iz 303 3 2
4164 49 26 O 34 77 414 3 4 0 4 2
5198 54 31 34 0 82 Eld 3 5 5 0 2
blhd 28 1 77 BZ 0 BlE B 2 2 20
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Applications

= | Traffic Assignment Problem

Equipment Replacement Problem

Excavation Planning Problem

@0 L.Bricker, L), aof lowa, 1998
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TERAFFIC
ASSICNMENT
FIRCEILEAM

Trip Generation Matrix

from>~ 1 < 3 4 5 Assume autos follow the
—— 30 35 40 15 shortest path from origin
10 —— 15 12 10 to destination

55 20 IS5 —— 4 Find the flow in the network,

1
2

3| 50 40 —- 35 20
4

S | 45 30 35 40 --

trips/hour (x10) Qﬂ

@D .L.Bricker, . of lowa, 1998

Apply Floyd's algorithm to
compute the shortest paths
& 5SD-trees

Assign the flow to each

shortest path

@0 L.Bricker, L), aof lowa, 1998
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@D .L.Bricker, . of lowa, 1998

Limitations of the model & algorithm

In reality, shortest distance (or shortest travel
time) is not the sole criterion for route
selection

The capacity of anvy link in a transportation
network is finite

@0 L.Bricker, L), aof lowa, 1998
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> Travel speeds are a function of the amount of
congestion on a link, so that, if the criterion
is shortest travel time, finding the shortest
paths cannot be done independently of
computing the traffic flow.

travel /

time on

link —

flow on link

&)

@D .L.Bricker, . of lowa, 1998

Excavation Flanning

An excavation plan for a new open-pit mine 15
characterized by a continuous path, starting
at node # 1 and ending at node #1535,

@0 L.Bricker, L), aof lowa, 1998
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An example of such an excavation plan:

earth to N
bhe excavated

@D .L.Bricker, . of lowa, 1998

The net profit of such a plan depends upon the
depth of the excavation as well as the expected
amount of recoverable ore.

For example, if the edge (5,6) is part of the plan,
then the associated net profit can be calculated by
estimating the recoverable ore in the earth above
and subtracting the cost of removing this earth.

@0 L.Bricker, L), aof lowa, 1998
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Let pi; be the net profit associated with edge (i,]).

(Not all py; are positive!)

How can this bhe modeled as a8 shoritest
path profblem 7

&)

@D .L.Bricker, . of lowa, 1998

Equipment Feplacement

The Rhode-Bloch Trucking Co. 15 preparing a
leasing plan for transportation equipment extending
over the next five yvears, The company can meet
its requirement for a truck by leasing a new truck
at the beginning of Year 1 and keeping 1t until the
beginning of Year j (<6). If j<&, then the company
replaces the truck at the beginning of vear J and
keeps it until the beginning of Year k (<6), etc.

&
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The cost of leasing a truck at the beginning of
Year i until the beginning of Year j (denoted cyj)
embodies the rental fee plus the expected cost
of operating and maintaining the truck.

rlgj\

£
Om
B

¢

@D .L.Bricker, . of lowa, 1998

The shortest path from node #1 to node #6
corresponds to the least-cost schedule for
replacement of the truck.
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