

Dual ascent example

Lagrangian Dual of SCP

(Solved via dual ascent)

```
Set(s) 23 24 25 removed from problem
(P= 16 17 22 > 14 = incumbent!)
# sets remaining is 22
```


author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu

Iteration # 1

Current multipliers:

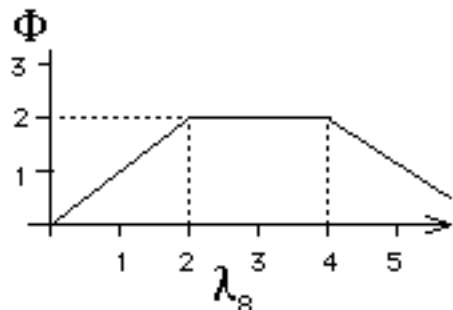
i	1	2	3	4	5	6	7	8
w[ii]	0	0	0	0	0	0	0	0

Solving Lagrangian relaxation:

```
*** Dual value is 0 ***
Sets in cover: #
Points not covered: 1 2 3 4 5 6 7 8
```

```
Heuristic solution cost is 12
*** New incumbent! *** Cover is 2 4 7
with cost 12
```

Dual ascent step


indicates that point 8 is not now covered.. its multiplier is too small

Selecting multiplier $w[8] = 0$ with subgradient = 1
 Sets not in solution which cover #8 are:

1 6 7 10 13 14 18 20 21 22

$X[1]$ enters when $w[8]$ is 2
 $X[6]$ enters when $w[8]$ is 4

Updated $w[8] = 2 = \text{Max}\{0, (1-\alpha) \times 2 + \alpha \times 4\}$ where $\alpha = 0$
 Anticipated improvement: 2

Point #8 is arbitrarily selected as one of the uncovered points. Its multiplier should be increased to provide incentive for a set to cover it.

©D.L.Bricker, U. of IA, 1998

Iteration # 2

Current multipliers:

i	1	2	3	4	5	6	7	8
w[i]	0	0	0	0	0	0	0	2

Solving Lagrangian relaxation:

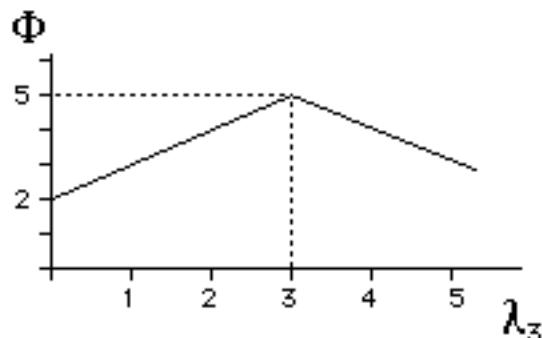
*** Dual value is 2 ***

Sets in cover: # 1

Points not covered: 1 3 4 5 6 7

Set(s) 16 17 19 22 removed from problem

(P= 13 13 14 14 > 12 = incumbent!)


sets remaining is 18

Dual ascent step

Selecting multiplier $w[3] = 0$ with subgradient = 1
 Sets not in solution which cover #3 are: 2 3 4 7 14

$X[2]$ enters when $w[3]$ is 3
 $X[3]$ enters when $w[3]$ is 3

Updated $w[3] = 3 = \max\{0, (1-\alpha) \times 3 + \alpha \times 3\}$ where $\alpha = 0$
 Anticipated improvement: 3

©D.L.Bricker, U. of IA, 1998

Iteration # 3

Current multipliers:

i	1	2	3	4	5	6	7	8
w[i]	0	0	3	0	0	0	0	2

Solving Lagrangian relaxation:

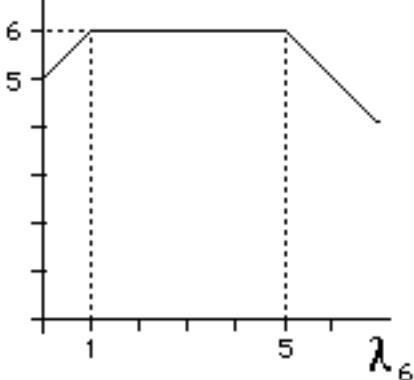
*** Dual value is 5 *** (Improvement: 3)

Sets in cover: # 1 2
 Points not covered: 5 6

Set(s) 18 20 21 removed from problem
 (P = 14 15 15 > 12 = incumbent!)
 # sets remaining is 15

©D.L.Bricker, U. of IA, 1998

Dual ascent step


Selecting multiplier $w[6] = 0$ with subgradient = 1

Sets not in solution which cover #6 are: 4 8 13 15

$X[4]$ enters when $w[6]$ is 1

$X[8]$ enters when $w[6]$ is 5

Updated $w[6] = 1 = \max\{0, (1-\alpha) \times 1 + \alpha \times 5\}$ where $\alpha = 0$
Anticipated improvement: 1

 Φ

©D.L.Bricker, U. of IA, 1998

Iteration # 4

Current multipliers:

i	1	2	3	4	5	6	7	8
w[i]	0	0	3	0	0	1	0	2

Solving Lagrangian relaxation:

*** Dual value is 6 *** (Improvement: 1)

Sets in cover: # 1 2 4

Points not covered: 5

©D.L.Bricker, U. of IA, 1998