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SQpP
Sequential
Quadratic
Programming

This Hypercard stack was prepared by:
Dennis L. Bricker,

Dept. of Industrial Engineering,
University of lowa,

lowa City, lowa 52242

e-mail: dbricker@icaen.uiowa.edu
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Consider the nonlinear programming problem:

Minimize f(x) _
subject to hy(x) =0, k=1,--- K |
gi(x)= 0, j=1, 5

Given a solution estimate x and step d,

(o-

(& +d) = (x) + [VE®)]'d + 15 d VIR + -
hi(x +d) = hy(®) + [Vhe®)]'d + 152 d' Voneyd + -
| gi®+d) = gi®) + [Vgi®)]'d + 12 d'VigiEa + -

R

@D L Bricker, U. of 14, 1999
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Form the linearly—-constrained/quadratic
minimization problem:

Minimize f(x) + [ViE)]Td + 15 d' viEx)d

subject to
hg(x) + [th(f)]Td =0,k=1,.-- K
- — T .
gj(X) + [ng(X)] d< 0,j=1,---1]

@D L Bricker, U. of |4, 1999

e X X2
Minimize f(x) =6 21+ =
Xz X{

subject to

hix) = xix2 -2=0
gix)=1-x1-x2=0

Nole thatl this is @ nonconvex problem....
nExJ is nonlinear and {x) 1s nonconvex!

@D .L.Bricker, U. of 14, 1999
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6.
-2 == X2 -6 2
2 x : °% Wy
Vi(x) = ] , Vix)=
6 + =5 6. 2 12x,
T
Vhix) = [¥¢], Vh(x) =
*l 1 0
1 5 0 0|
Ve =[ 1], vig(x) =
0 0

@D .L .Bricker, U. of 14, 1999
Let the starting point be X°=(2,1)

23 3 -25
f(X%)= 12.25, vi(x%) = /4 v(X°) = /8 /4]

- 47/, -25/4 24
(1 ] (0 1
h(X°) = 0, VhiX®)=| " |, Vh(X%)= ]
| = 1 0
= 0 0
g(X)=-2<0, vgX9=| [, Vg9 :[ ]
(slack? L~1 00

@D .L.Bricker, U. of 14, 1999
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At X°=1(2,1), the approximating QP is

Minimize [VE(X*)]'d + 15 d'V#(x%)d |
s.t. [Vh(Xo)]Td - - h(XO)
[Ve(x°)'d = - g(x°)

Minimize [ 23/, -47/4][:;]+ 151d, 4]

subject to [d

@D L Bricker, U. of |4, 1999

This QP problem has the optimal solution:

d, = - 0.920/9

d, = + 0.4604

and so X'=X°+d=(2,1)+ (-0.92079, +0.4604)
= (1.07921, 1.4604)

At this new point, X', we compute a new QP
approximating problem.

@D .L.Bricker, U. of 14, 1999
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vf(xl)z[ 1.78475 ] sz(xl)=[6-4595 -4.4044]

- 2.17750 -4.4044 4.1579

: .| 1.4604
h(X') = - 0.42393, Vh(X ') =

,vzh(xl):lo 1]

1.07921 1 0
1, L |- 2 o, |00
g(x1) = -1.53961 <0, vg(xy=| |, Ve(x%) =
-1 0 0

@D L Bricker, U. of |4, 1999

L d
Minimize [1.78475,-2.17750] [ dl ]
z

6.4595 -4.4044 [ d
+ 1 |
2 le d2][-4.4044 4.1579 ][dz}

subject to

d
[ 1.4604,1.07921] [d;]= 0.42393

(1, _1][d1] < 1.53961
d;

@D .L.Bricker, U. of 14, 1999
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algorithm

Step 0: Select an estimate X° of the optimal
solution, and let t=0. (X° need not be
feasible!)

Step 1: Approximate the problem with a linearly
constrained QP problem at Xt .

Step 2: Solve for the optimal d*.

Step 3: If d*= 0, stop;
else, let X"'=X'+d"

Increment t and return to step 1.

@D L Bricker, U. of |4, 1999

2
Minimize (X, - X7) +(1 - X,
subject to
XX, =4,
X, 025X+ 2
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Xy | iipepeit s X, = 025%; + 2
G- | e M.
3
2
. XXz =4
0 ! I ! !

Objective
Z«F X
A
A Objective fn for Successive QP Example

A
Ze((K[21-X011*2)*20+(1-K[11)0%2
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X1X224, gl(X)=4‘X1X2$O
i.e.,
g (X)=2+0.25X-X, <0

X,> 025X +2

Inequality Constralints G(x)=0

zeG X

A

A Constraint functions for SQP example
A

Ze4-F[11xX[2]

Z¢Z,2+( . 25%xX[11%*2)-X[2]

Gradient of objective

GeGRADIENT X
M

A Gradient for objective function of SQP example
A

Ge(dxX[11*3)+( "4xE[11xX121)+¢(2xXr11)-2
GeG,2x(X[21-X011%2)

Hessian of objective

H«HESSIANAF X
Hessian function for Objective
“(12xKX[11*2)+(74xX[2]1)+2

€2
«H[2;11«74xX[1]

el D
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Jacoblan of Inequality Constraints

JeJACOBIAN X

A

A Jacoblan matrix of inequality constraints
A for SQP example

A
Je2 2p(-X021),(-X011>,(.5%xX[11>,71

Convergence criteria:

(The algorithm terminates when either of the following
is satisfied, where 1A%| 1s the change 1n optimal X
between two successive QP problems, and AF(X) 1s the
change in the objective function.)

0.001

mnax 1Axl =
= 0.001

lAFC(EY |
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Ky = 0.25K; +2

Xz
4— .................
3
7787
A0 .

I . peint

1 X1X2=4

0 | | | |

0 1 2 3 4 X,

X =2 2
F(xy = §

vF(x) = 18 4

vYF(x) (Hesslan matrix)

42 78
-8 2

G(x) = 01

VGR(xX) (Jacoblan matrix)

2 T2
1 "1
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QP Approximation

Hessian of Objective Fn

42 8
8 2

Linear Terms of Objective

i: 1 2
Cril: 18 ~4

page 11

Minimize 21d. - 8dd, + d
+18d1-4d2

-2d1-2d2$ U
dl -dz 5-1

subject to

Jacoblan Matrix of Constraints & RHS

2 e 0
1 "1 "1

4
'2d1'2d2£0
dl -dz 5-1
4
0 0
X1=X1+d1 {d1=X1-X1
0 0
X X2=Xz+d2 d2=Xz-X2

j d1=X1-2,d2=X2-2

Feasible region of subproblem |
(in terms of X, & X5)
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o

.'..':;}/ Z .'/,
. %

/// i s 005K 42
. /’/,é/,//////?/%
%%%%%”% 2%y- 2%y 8

GG ‘?*--_{ -

4éé%¢%%%%%%? X,-X -1
s 1- Xz
\ b Il i 87
oI USURR , Ag peint
' Note that feasible

region of the QP
approximation is
linear!

XXp=4

Tableaulg

(hefore adding artificial wvariable)
1 2“ 3 4.5 3] b

-2 7210 0110 0
1 -1 0 001 -1
42 "8i72 1.0 0| -18
8§ 2172 1100 4

These represent the K.T. conditions:
Rows 1 through 2 represent vg(xiAx £ -g(x)
Rows 3 through 4 represent H(xoax - vgHU = -v£(x2)

Variabli gumbers:

A s
¥: 5 6 (slack wvariables for vg(x)ax = -g(x) constraints)
OJ: 3 4 (nultipliers for vg(x)aAx £ -g(x) constralnts)

AX 1s unrestricted in sign, while ¥ & U =0
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TABLEAU |

(after pivoting Ax and slack wvarilables into basis)

12 3 4 56 b
0012 "4 10| 2

00: "4 "1.4.01| 0.4
10i "1 0.3:00] 0.2
01§ -5 -1.7:00| 1.2

Because the variable d, is not required to be
nonnegative, this is a feasible basic solution,
and no further pivoting is required!

Optimal QP
aubproblem

solution

Primal Variables: ax = ~0.2 1.2
olack: ¥ =2 0.4

Dual Variables: u=00

QP subproblem objective Function

(approximate improvement AF): 74.2

X=X+ Ax = 1.8 3.2

page 13
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2
7 //
i
O
7 v

7 R__{-le-zxzﬁs
24
2

Xy-X,y-1

XXy,=4
0 | | | |
0 1 2 3 4 X,
_Iteration # .
X =1.8 3.2
Fi(x) = 0.6416
vF(x) = 1.888 ~0.08
vYF(x) (Hesslian matrix)
28.08 ~7.2
~7.2 2
G(xy = "1.76 ~0.39

VGR(X) (Jacoblan matrix)

“Aag  d=B

0.9 71
Lagrange mnultipliers U

00
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QP Approximation

Hessian of Objective Fn

28.08 77.2
F il 2

Linear Terms of Objective

i: 1 2
Cril: 1.888 ~0.08

Jacoblian Matrix of Constralnts & RHS

S dad 1.76
0.9 71 0.39

TABLEAU

(after pivoting Ax and slack wvariables into basis)

12 3 4 556 b
0 01-45.0007 ~13 1 0| -5.33837
00113 -3.875.0 1| "1.57
1 0. -4.48148 ~1.25 10 0| -0.740741
01:-17.0333 -5 [0 0| ~2.62667

Only the first two rows of the tableau have infeasibility,
since there are no nonnegative restrictions on the step
vector d.
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TABLEAU
(with artificial wvariable included)

1 2 3 4 5 6| a b

Q0 0O|~45.0007 ~13 1 0|71 °5.33837 Pi‘VOtl'OW

0 0713 ~3.875 0 1(°71) "1.57

1 0| ~4.48148 ~1.25 0 O O T0.740741

0 1|°717.0333 -5 QO O O "2.62667

Artificial wvariable (a) enters the bhasis,
replacing variable 5 whose complement is 3

Artificial wariable (a) enters the basis,
replacing variable 5 whose complement is 3

1 2 3 4 5 6| a b

0 0| 45.0007 13 1 01 5.33837

0 0| 32.0007 9.125 |71 1| O | 3.76837

1 0| ~4.48148 ~1.25 0 0 0]70.740741
0 1|1717.0333 75 00 0|~2.62667

Entering: 3, Leaving: 6 (Pivot 1in row 2O

Note that the step variables d; & d; will never leave the
basis, because they are not bounded below by zero!
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1 2] 3 o 4] 6 a b
0 0| 0 0.1680585 0.406241 ~1.40624 1 0.039135
0 0l 1 0.28515 “0.0312493 0.0312493| 0 0.117759
1 0 0 0.0278929|70.140043 0.140043 0| 70.213007
01| 0 70.142951 |°70.532279 0.532279 0| "0.620841
Entering: 4, Leaving: 7 (Pivot in row 1)
aa\rtificial variable
Tableau
121 3 4 7 ] a b
0 0| 01| 2.41731 ~8.36776 5.95045 0.232871
0 0l 1 0|70.720545 2.41731 |~71.69677 0.0513559
1 0 0 0|70.207469 0.373444|70.165975 | 70.219502
01| 0 0|70.186722 ~0.6639 0.850622 | "0.5875562

We now have a basic feasible solution in our tableau!

page 17
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Optimal QP

aubproblem
solution

Primal Variables: Ax = ~0.219502 ~0.587552
olack: ¥ =00

Dual Variables: u = 0.0513559 0.232871

QP subproblem objective Function

(approximate improvement AF): ~0.274311

X =X+ Ax = 1.5805 2.61245

Iteration # 23

X = 1.5805 2.61245
F(x) = 0.350082
VF(x) = 0.437289 0.228949

vYF(x) (Hesslan matrix)

%% 223?39 3'32199 Note that Xis

G(x) = ~0.128969 0.0120453 infeasibie i the
secorn? constrant/
VGR(¥) (Jacoblan matrix)

“2.61245 ~1.5805
0.790249 ~1

Lagrange mnultipliers U = 0.0513559 0.232871
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QP Approximation

Hessian of Objective Fn

21.5259 76.32199
“6.32199 2

Linear Terms of Objective

i: 1 2
Cril: 0.437289 0.228949

Jacoblan Matrix of Constraints & RHS

“2.61245 ~1.5805 0.128%969
0.790249 "1 0.0120453

page 19
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Tableau é

(hefore adding artificial wvariable)

1 3 4 5 6 b

-2.61245 -1 0 0 10| 0.128969
0.790249 -1 0 0 0 1]-0.0120453
21.5250 6  -2.61245 0.790249. 0 0| ~0.437289
6.32199 2 -1.5805 -1 0 0]-0.228949

These represent the K.T. conditions:
Rows 1 through 2 represent Vg(xiAX = -g(x)
Rows 3 through 4 represent H(xH)AX - vg(xOU = -V

Variabli gumbers:

AX:
¥Y: 5 6 (slack variables for vg(xH)AxX = -g(x) constraints:
OJ: 3 4 (nultipliers for vg(x)ax £ -g(x) constralnts)

AX 1s unrestricted i1n sign, while Y & U =0

TABLEAU

(after pivoting Ax and slack wvariables into basis)

12 3 4 5 6 b

0 0 738.7871 ~12.487 1 0|75.78006

0 0 712.487 “4.14466 0 1 | 71.91137

1 0 74.93378 71.53735 0 0 [70.752866
01 716.3859 ~5.35955 0 0| 72.49428
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TABLEAU |

(with artificial wvariable included)

12 3 4 5 6| a b

0 o|-38.7871 -12.487 | 1 o|-1 | -5.78006 «— pivot row
S8, il )3 T00E

0 1|-16.3859  -5.35055| 0 0| 0| -2.49428 :}feagﬂﬂe!

Artificial wariable (a) enters the basis,
replacing variable 5, whose complement 1s 3

Tableau

1 2 3 4 5 6| a b

0 0| 38.7871 12.487 "1 0 1 5.78006
0 0| 26.3002 8.34233|71 1| O 3.86868
1 0| ~4.93378 ~1.53735 0 0| O | "0.752866
0 1(716.3859 ~5.35955| 0 0| 0| ~2.49428

Entering: 3, Leaving: 6 (Pivot in row 2)
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1 2| 3 4 5 6 a b

0 0| 0 0.183821 0.474788 ~1.47479 1 0.074569

O 0 1 0.317197 |70.0380226 0.0380226| 0 0.147097

1 0| 0 0.0276343|70.187595 0.187595 0| -0.0271193

01| 0 70.161983 | "0.623035 0.623035 0| "0.0839547
Entering: 4, Leaving: 7 (Pivot in row 1)

1 2| 3 4 4] 6 a b

0 0| 01| 2.58288 ~8.02294 5.440086 0.40566

0 0] 1 0|°0.857304 2.58288 |~1.72557 0.0184231

1 0 0 0]70.258971 0.409303|70.150332| ~0.0383294

01| 0 0]|70.204652 ~0.676549| 0.8812 “0.0182445

The artificial variable has now left the basis
(i.e., has been driven to zero).
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Optimal QP
aubproblem
solution

Primal Variables: Ax = ~0.0383294 ~0.0182445
olack: ¥ =00

Dual Variables: u = 0.0184231 0.40566

QP subproblem objective Function

(approximate improvement AF): ~0.00921389

X =X + Ax = 1.54217 2.5942

Iteration # 4 |

X = 1.54217 2.5942
F(x) = 0.340568
VF(x) = 70.247602 0.43184

vYF(x) (Hesslian matrix)

20.1626 “h.16867
“6.16867 2

G(x) = ~0.000699299 0.000367285
VG(x) (Jacoblan matrix)

~2.5942 ~1.54217
0.771084 ~1

Lagrange multipliers U = 0.0184231 0.40566
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QP Approximation

Hessian of Objective Fn

20.1626 ~6.16867
“6.16867 2

Linear Terms of Objective

1: 1 i
Cril: ~0.247602 0.43184

Jacobian Matrix of Constralnts & RHS

~2.5942 ~1.54217 0.000699299
0.771084 ~1 “0.000367285

(hefore adding artificial wvariable)

1 2 3 4 5 6 b
2.5942 -1.54217 0O 0 1 0] 0.000699299
0.771084 ~1 0 0 0 1]70.000367285

20.1626 “h.16867 ~2.5942 0.771084 0 0| 0.247602

“6h.16867 2 -1.54217 "1 0 0]70.43184
These represent the K.T. conditions:

Rows 1 through 2 represent vg(xiIAX = -g(x)

Rows 3 through 4 represent H(xHax - vgOHlU = -v£(x)
Yariable numbers:

AX: 1 2

¥Y: 5 6 (slack variables for vg(xH)AX = -g(x) constraints)
TJ: 3 4 (nultipliers for vg(xH)»AX = -g(x) constralnts)

AX 1s unrestricted 1n sign, while Y & U =0
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TABLEAU

(after pivoting Ax and slack wvarilables into basis)

12 3 4 56 b

0 01748.7407 ~15.7353 11 0| ~7.34678
0 02715.73563 “5.209183 0 1| 72.42372
1 0% "6.46892 ~2.03574: 0 0| ~0.954253
0 1£720.7234 T6.778913 0 0 73.15916

TABLEAU

(with artificial wvariable included)

1 2 3 4 5 6| a b

0 0|-48.7407 ~15.7353 | 1 0|-1 | “7.34678 «— pivot row
0 0|-15.7353  ~5.20918| 0 1|-1 | ~2.42372

1 0| "6.46892 ~2.03574| 0 0| 0| "0.954253 feasibiel
0 1|-20.7234  “6.77891| 0 O 0| ~3.15916 easible!

Artificial wvariable (a) enters the basis,
replacing variable 5, whose complement 1s 3
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Tableau

1 2 3 ! 5 6| a b

0 0| 48.7407 15.73583 (71 Of 1 7.34678

0 0| 33.0054 10.5262 |71 1| © 4.92306

1 0| “6.46892 ~2.03574 O O O | ~0.954253

0 1(°720.7234 ~6.77891 O O O | ~3.15916

Entering: 3, Leaving: 6 (Pivot in row 2)
Tableau %

1 2| 3 4 5 6 a b
0 0O O 0.190825 0.476751 ~1.47675 1 0.0766404
0 0O 1 0.318923 |70.0302981 0.0302931| © 0.149159
1 O 0O 0.0273461|°0.195996 0.195994 0 0.0106483
01| 0 "0.169739 |~0.62788 0.62788 0| "0.0680623

Entering: 4, Leaving: 7 (Pivot in row 1)

C{ ar-fificial variabie
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Optimal QP %
aubproblem E

polution

Primal Variables: Ax = 70.000334549 0.00010932
nlack: ¥y =00

Dual Variables: u = 0.0210721 0.401625

QP subproblem objective Function

(approximate improvement AF)>: 0.00013141

X=X + Ax = 1.54183 2.59431
*kkConvergence criterion satisfied:

1A%1Z 0.001

|1aF1= 0.001
F(x) = 0.3407 , _ L
Gexy = 3.65728E-8 2.79808E-8 —=—— slightly infeasible in

both constraints!

Because the standard QP problem has linear
constraints, we were allowed to use only
linear approximations to the nonlinear
constraint functions.

By optimizing a quadratic approximation of

the Lagrangian function, we can make use of
2nd-derivative information about the nonlinear
constraint functions!

@D .L.Bricker, U. of 14, 1999
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: : . Consider
QP Approximation L
: : Minimize f(x)
of Lagrangian Function _
subject to
hy(x) =0, k=1,--- K
which has the Lagrangian function

K

L(xA)=f(x) + 5 Aghe(x) = f(x) + A 'hix)
k=1

page 28

@D L Bricker, U. of |4, 1999

The solution of

K
Minimize f(x) + > Aghg(x)
k=1

subject to

hy(x) = 0, k=1,---

is clearly a solution #/s¢ of the original problem.

Given a current iterate (x,A), we can form a
quadratic approximation to the (Lagrangian)

objective and linear approximation to the
equality constraints.

@D .L.Bricker, U. of 14, 1999
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LE+d,2) = L(x,%) + [ViL(x,4)]'d + LaTviLGE yd + -

= [f(i) + iTh(i)] + :Vf(i) + iTVh(i)]Td

T

+ =d

1
2

VAR + S ikvzhk(i)} d & s
_ k

@D L Bricker, U. of |4, 1999

[f®) + 2'h@)+ Minimum [VEE) + X' VhE)|'d
+1d [sz(§)+ S ikvzhk(i)] d
k
subject to

[Vhi(x)]" d= —hgix), k=1,.-- K

Unlike the previous approximating QP problem,
this QP problem makes use of information about
the second derivatives of the constraint
functions!

@D .L.Bricker, U. of 14, 1999
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algorithm

Step 0: Select an estimate X° of the optimal
solution, and let t=0. (X° need not be
feasible!)

Step 1: Approximate the problem with a linearly
constrained QP problem at Xt .

Step 2: Solve for the optimal d*.

Step 3: If d*= 0, stop;
else, let X"'=X'+d"

Increment t and return to step 1.

@D L Bricker, U. of |4, 1999

@ Select initial x° and multiplier 2°
vector (e.g.,A2°=0); set t=0

Compute the approximating QP with
x =xt and A=At

Minimum |V£®)+ A Vh()] d

+ %dT [sz(§)+ 5 Ikvzhk(:?)} d
k

subject to

[Vhi(x)]" d= —hy(x), k=1,--- K

SQP
Algorith

O | BrRaRar i TE e :
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Solve for the optimal d* and compute
the optimal Lagrange multipliers ¥
of the QP.

If d*=0, STOP;
Else, let xt*1 = xt+ ¢d%, at*tl=p*
Increment t and return to step 1.

@D L .Bricker, U. of |4, 1999



