

SIMPLE PLANT LOCATION PROBLEM

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@caen.uiowa.edu

Given: M candidate locations, N customers
 F_i = fixed cost of establishing a plant at
site i, $i=1,2,\dots,M$

C_{ij} = cost of supplying all demand of
customer j from plant i, $j=1,2,\dots,N$

The Problem: Select a set of plant locations and
allocation of customers to plants so as to minimize
the total cost.

Note: there are no capacity constraints for a plant
which has been selected, and the number of plants is
not specified (unlike p-median problem)

ILP models of the SPL problem

Define variables:

$$Y_i = \begin{cases} 1 & \text{if plant site } i \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$

$$X_{ij} = \begin{cases} 1 & \text{if plant } i \text{ serves all demand of customer } j \\ 0 & \text{otherwise} \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

Model #1

$$\text{Minimize } \sum_{i=1}^M \sum_{j=1}^N C_{ij} X_{ij} + \sum_{i=1}^M F_i Y_i$$

$$\text{s.t. } \sum_{i=1}^M X_{ij} = 1 \quad \forall j=1, \dots, N$$

$$X_{ij} \leq Y_i \quad \forall i \& j$$

$$Y_i \in \{0,1\}, X_{ij} \geq 0 \quad \forall i \& j$$

Model #2

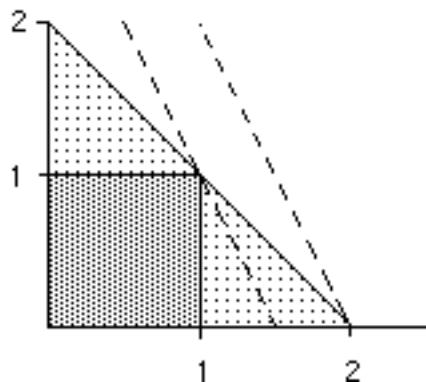
Replace constraints $X_{ij} \leq Y_i \quad \forall i \& j$
with aggregated constraints

$$\sum_{j=1}^N X_{ij} \leq N Y_i \quad \forall i$$

©Dennis Bricker, U. of Iowa, 1997

Models #1 & #2 are equivalent, in that the feasible solution sets are identical....

But-- their LP relaxations (i.e., replacing $Y_i \in \{0,1\}$ with $0 \leq Y_i \leq 1$) are not!



©Dennis Bricker, U. of Iowa, 1997

Example

Minimize $-2X_{i1} - X_{i2}$

cost = -3

feasible set for
 $X_{i1} + X_{i2} \leq 2$

cost = -4

feasible set for
 $X_{i1} \leq 1$
 $X_{i2} \leq 1$

Model #1 provides
a higher, "better"
lower bound on the
optimum!

Model #2 is more "compact", and
the LP relaxation is easier to solve.

©Dennis Bricker, U. of Iowa, 1997

**LP Relaxation
of Model #2**

At the LP optimum,

$$\sum_{j=1}^N X_{ij} \leq NY_i \quad \forall i \quad \text{is "tight",}$$

$$\text{i.e., } Y_i = \frac{1}{N} \sum_{j=1}^N X_{ij}$$

$$\text{Eliminate } Y_i \quad \text{Minimize } \sum_{i=1}^M \sum_{j=1}^N C_{ij} X_{ij} + \sum_{i=1}^M \frac{1}{N} F_i \sum_{j=1}^N X_{ij}$$

$$\implies \left\{ \begin{array}{l} \text{Minimize } \sum_{i=1}^M \sum_{j=1}^N \left[C_{ij} + \frac{F_i}{N} \right] X_{ij} \\ \text{s.t. } \sum_{i=1}^M X_{ij} = 1 \quad \forall j=1, \dots, N \\ \quad \quad \quad X_{ij} \geq 0 \quad \forall i \& j \end{array} \right.$$

©Dennis Bricker, U. of Iowa, 1997

The solution is $X_{ij}^* = \begin{cases} 1 & \text{if } C_{ij} + \frac{F_i}{N} \leq C_{kj} + \frac{F_k}{N} \quad \forall i \\ 0 & \text{otherwise} \end{cases}$

with objective value $\sum_{j=1}^N \min_i \left\{ C_{ij} + \frac{F_i}{N} \right\}$

*Although not a strong bound,
this is easily computed:*

APL

$$+/ \ L \neq C + \Delta(\Phi\rho C)\rho F \div N$$

©Dennis Bricker, U. of Iowa, 1997

4 = M = # potential plant sites
 8 = N = # demand points

		Costs									
		j=	1	2	3	4	5	6	7	8	F
i		1	4	6	8	9	5	4	3	0	140
2		10	5	10	0	8	10	9	9	9	120
3		3	5	7	9	4	5	2	3	3	177
4		8	6	4	7	5	10	8	8	8	128
D		98	12	7	33	49	33	87	78		

©Dennis Bricker, U. of Iowa, 1997

Weak LP Relaxation
 of Simple
 Plant Location
 Problem

The Matrix C + (F/N)

		to										
		f	1	2	3	4	5	6	7	8		
		r	1	144	146	148	149	145	144	143	140	
		o	2	130	125	130	120	128	130	129	129	
		m	3	180	182	184	186	181	182	179	180	
		4	136	134	132	135	133	138	136	136		

The LP bound is found by summing the minima in each column
 Lower bound provided by weak LP relaxation = 1031.38

©Dennis Bricker, U. of Iowa, 1997

Model #3

Minimize $\sum_{i=1}^M f_i(X_{i1}, X_{i2}, \dots, X_{iN})$

subject to $\sum_{i=1}^M X_{ij} = 1 \quad \forall j=1, 2, \dots, N$
 $X_{ij} \geq 0 \quad \forall i \& j$

where

$$f_i(X_{i1}, X_{i2}, \dots, X_{iN}) = \begin{cases} 0 & \text{if } \sum_{j=1}^N X_{ij} = 0 \\ F_i + \sum_{j=1}^N C_{ij} X_{ij} & \text{otherwise} \end{cases}$$

continuous
variables only;
but objective
is discontinuous

©Dennis Bricker, U. of Iowa, 1997

**Surrogate
Constraint**

Define a *surrogate multiplier* for each constraint: $U_j, j=1, \dots, N; \sum_j U_j = 1$

Form a linear combination of the constraints

$$\left. \begin{array}{l} U_1 \times \sum_i X_{i1} = U_1 \times 1 \\ \vdots \\ U_N \times \sum_i X_{iN} = U_N \times 1 \end{array} \right\} \Rightarrow \sum_j U_j \sum_i X_{ij} = \sum_j U_j \Rightarrow \sum_j \sum_i U_j X_{ij} = 1$$

This *surrogate constraint* is implied by the original set of constraints, but is less restrictive.

©Dennis Bricker, U. of Iowa, 1997

**Surrogate
Relaxation**

We replace the original constraints of Model #3 with the single surrogate constraint:

$$\text{Minimize} \sum_{i=1}^M f_i(X_{i1}, X_{i2}, \dots, X_{iN})$$

$$\text{subject to} \quad \sum_j \sum_i U_j X_{ij} = 1$$
$$X_{ij} \geq 0 \quad \forall i \& j$$

©Dennis Bricker, U. of Iowa, 1997

Because the objective function is *concave*, the theory of nonlinear programming assures us that an extreme point of the feasible region (i.e., a *basic* solution) is optimal, so only a single variable is $\neq 0$.

For example, $X_{ij} = \begin{cases} 1/U_q & \text{if } i=p, j=q \\ 0 & \text{otherwise} \end{cases}$

with cost $F_p + C_{pq} \times 1/U_q$

for some p and q.

©Dennis Bricker, U. of Iowa, 1997

Therefore, we can solve the surrogate relaxation by enumerating the $M \times N$ basic solutions, and selecting the least cost solution:

$$S(U) = \underset{i,j}{\text{minimum}} \left\{ F_i + C_{ij} / U_j \right\}$$

Because the optimal solution of the original SPL problem is feasible in this surrogate relaxation,

$$S(U) \leq \text{optimum of SPL problem}$$

for all $U = (U_1, U_2, \dots, U_N)$

©Dennis Bricker, U. of Iowa, 1997

Surrogate Dual Problem

Since for each U , $S(U)$ gives us a lower bound on the SPL optimal value, select the surrogate multipliers U to give us the "best", i.e., greatest lower bound:

$$\hat{S} = \underset{U}{\text{maximum}} \ S(U)$$

$$\text{s.t. } \sum_j U_j = 1$$

©Dennis Bricker, U. of Iowa, 1997

Use of Surrogate Dual bound in a Branch-&-Bound algorithm

without explicitly computing \hat{S} :

$$\hat{S} \geq V \iff \exists \mathbf{U} = (U_1, \dots, U_N) \text{ such that } \begin{cases} V \leq F_i + \frac{C_{ij}}{U_j} \quad \forall i, j \\ \sum_j U_j = 1 \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

Assuming $F_i < V$, this is equivalent to

$$\begin{cases} U_j \leq \frac{C_{ij}}{V - F_i} \quad \forall i, j \\ \sum_j U_j = 1 \end{cases}$$

which clearly has a solution if and only if the least upper bounds of U_j , $j=1, \dots, N$, have a sum ≥ 1 :

$$\hat{S} \geq V \iff \sum_j \min_i \left\{ \frac{C_{ij}}{V - F_i} \right\} \geq 1$$

©Dennis Bricker, U. of Iowa, 1997

$$\frac{C_{ij}}{V - F_i}$$

0.44	0.08081	0.06285	0.3333	0.275	0.1481	0.2929	0
1.076	0.06586	0.07684	0	0.4303	0.3622	0.8595	0.7706
0.3443	0.07026	0.05738	0.3478	0.2295	0.1932	0.2037	0.274
0.8682	0.07973	0.03101	0.2558	0.2713	0.3654	0.7708	0.691

Sum: $\sum_j \min_i \left\{ \frac{C_{ij}}{V - F_i} \right\} = 1.023$

The conclusion of the comparison test is:

$$\hat{S} \geq V \ (= 1031)$$

©Dennis Bricker, U. of Iowa, 1997

By any of several methods, the equation

$$\sum_j \min_i \left\{ \frac{C_{ij}}{V - F_i} \right\} = 1$$

may easily be solved for \hat{S} if the actual value of \hat{S} is necessary.

©Dennis Bricker, U. of Iowa, 1997

**Surrogate
Dual Algorithm**

Lower bound= 1074, Upper bound= 1449
Estimated duality gap = 25.89%

Upper bound achieved by $Y = 1 1 1 1$, i.e.,
opening plants 1 2 3 4

(Not guaranteed to be optimal!)

©Dennis Bricker, U. of Iowa, 1997

**Surrogate
Dual Algorithm****Matrix $C^T \alpha (\phi \rho C) \rho (SD - F)$**

0.4198	0.0771	0.05997	0.318	0.2624	0.1414	0.2795	0
1.027	0.0629	0.07339	0	0.411	0.346	0.8209	0.736
0.3278	0.0669	0.05464	0.3312	0.2185	0.184	0.194	0.2609
0.8289	0.07612	0.0296	0.2442	0.259	0.3489	0.7358	0.6597

($Y[i] = 1$ if any column minimum, i.e., Lambda,
is found in row # i of the matrix above)

Surrogate multipliers

j	1	2	3	4	5	6	7	8
Lambda[j]	0.3278	0.0629	0.0296	0	0.2185	0.1414	0.194	0

©Dennis Bricker, U. of Iowa, 1997

Theorem

If $\mu_{ij} \geq 0$ and $\sum_{j=1}^N \mu_{ij} \leq F_i \forall i$

then $\sum_{j=1}^N \min_i \{C_{ij} + \mu_{ij}\}$ is a *lower bound* for the Simple Plant Location problem

Note: If $\mu_{ij} = \frac{F_i}{N} \forall i, j$, this is the lower bound provided by the LP relaxation of model #2! By appropriate choice of μ_{ij} , it may give us a better lower bound.

©Dennis Bricker, U. of Iowa, 1997

Proof: SPL model #1 may be written

$$\Phi = \text{minimum} \sum_{i,j} C_{ij} X_{ij} + \sum_i \left(F_i - \sum_j \mu_{ij} \right) Y_i + \sum_{i,j} \mu_{ij} Y_i$$

$$\text{s.t. } \sum_i X_{ij} = 1, \quad X_{ij} \leq Y_i, \quad X_{ij} \geq 0, \quad Y_i \in \{0,1\} \quad \forall i, j$$

$$\Rightarrow \Phi \geq \sum_{i,j} C_{ij} X_{ij} + \sum_{i,j} \mu_{ij} Y_i \geq \sum_{i,j} C_{ij} X_{ij} + \sum_{i,j} \mu_{ij} X_{ij} = \sum_{i,j} (C_{ij} + \mu_{ij}) X_{ij}$$

$$\Rightarrow \text{minimum} \sum_{i,j} (C_{ij} + \mu_{ij}) X_{ij}$$

$$\text{s.t. } \sum_i X_{ij} = 1, \quad X_{ij} \leq Y_i, \quad X_{ij} \geq 0, \quad Y_i \in \{0,1\} \quad \forall i, j$$

must give us a lower bound for SPL, namely

$$\sum_{j=1}^N \min_i \{C_{ij} + \mu_{ij}\}$$

©Dennis Bricker, U. of Iowa, 1997

The dual problem is, then, to choose the quantities μ_{ij} so as to obtain the *greatest lower bound*, i.e.,

$$\begin{aligned} \text{Maximize} \quad & \sum_{j=1}^N \min_i \{C_{ij} + \mu_{ij}\} \\ \text{s.t.} \quad & \sum_j \mu_{ij} \leq F_i \quad \forall i \\ & \mu_{ij} \geq 0 \quad \forall i, j \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1997

The LP equivalent:

$$\begin{aligned} \text{Maximize} \quad & \sum_{j=1}^N \min_i \{C_{ij} + \mu_{ij}\} \\ \text{s.t.} \quad & \sum_j \mu_{ij} \leq F_i \quad \forall i \\ & \mu_{ij} \geq 0 \quad \forall i, j \end{aligned}$$

$$\begin{aligned} \text{Maximize} \quad & \sum_{j=1}^N Z_j \\ \text{s.t.} \quad & Z_j \leq C_{ij} + \mu_{ij} \quad \forall i, j \\ & \sum_j \mu_{ij} \leq F_i \quad \forall i \\ & \mu_{ij} \geq 0 \quad \forall i, j \end{aligned}$$

The dual of this LP is, in fact, the LP relaxation of SPL model #1!

©Dennis Bricker, U. of Iowa, 1997

Bilde-Krarup- Erlenkotter [BKE] Algorithm

This algorithm is a dual ascent algorithm for computing good feasible solutions to the dual of the LP relaxation of Model #1.

At each iteration, exactly one μ_{ij} is adjusted to give an improvement in the lower bound. It terminates when no improvement can be obtained by adjusting a single multiplier.

©Dennis Bricker, U. of Iowa, 1997

Bilde-Krarup- Erlenkotter Dual Algorithm

Step 1: $k \leftarrow 1$ & $\Lambda \leftarrow 294 \ 60 \ 28 \ 0 \ 196 \ 132 \ 174 \ 0$

Step 2a: $\epsilon = 98 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
 $\Lambda[1] = 392$
 $e = 0 \ 0 \ 98 \ 0, LB = 982$

Step 2a: $\epsilon = 98 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
 $\Lambda[2] = 60$
 $e = 0 \ 0 \ 98 \ 0, LB = 982$

Step 2a: $\epsilon = 98 \ 0 \ 21 \ 0 \ 0 \ 0 \ 0 \ 0$
 $\Lambda[3] = 49$
 $e = 0 \ 0 \ 98 \ 21, LB = 1003$

Step 2a: $\epsilon = 98 \ 0 \ 21 \ 120 \ 0 \ 0 \ 0 \ 0$
 $\Lambda[4] = 120$
 $e = 0 \ 120 \ 98 \ 21, LB = 1123$

©Dennis Bricker, U. of Iowa, 1997

Step 2a: $\epsilon = 98 0 21 120 49 0 0 0$
Lambda[5]= 245
 $\epsilon = 0 120 147 21, LB = 1172$

Step 2a: $\epsilon = 98 0 21 120 49 33 0 0$
Lambda[6]= 165
 $\epsilon = 33 120 147 21, LB = 1205$

Step 2a: $\epsilon = 98 0 21 120 49 33 30 0$
Lambda[7]= 204
 $\epsilon = 33 120 177 21, LB = 1235$

Step 2a: $\epsilon = 98 0 21 120 49 33 30 107$
Lambda[8]= 107
 $\epsilon = 140 120 177 21, LB = 1342$

Step 3: do not terminate. Set k← 2

Step 2a: $\epsilon = 0 0 21 120 49 33 30 107$
Lambda[1]= 392
 $\epsilon = 140 120 177 21, LB = 1342$

©Dennis Bricker, U. of Iowa, 1997

Step 2a: $\epsilon = 0 0 21 120 49 33 30 107$
Lambda[2]= 60
 $\epsilon = 140 120 177 21, LB = 1342$

Step 2a: $\epsilon = 0 0 0 120 49 33 30 107$
Lambda[3]= 49
 $\epsilon = 140 120 177 21, LB = 1342$

Step 2a: $\epsilon = 0 0 0 0 49 33 30 107$
Lambda[4]= 120
 $\epsilon = 140 120 177 21, LB = 1342$

Step 2a: $\epsilon = 0 0 0 0 0 33 30 107$
Lambda[5]= 245
 $\epsilon = 140 120 177 21, LB = 1342$

Step 2a: $\epsilon = 0 0 0 0 0 0 30 107$
Lambda[6]= 165
 $\epsilon = 140 120 177 21, LB = 1342$

©Dennis Bricker, U. of Iowa, 1997

Step 2a: $\epsilon = 0 0 0 0 0 0 0 107$
 $\text{Lambda}[7] = 204$
 $\epsilon = 140 120 177 21, \text{LB} = 1342$

Step 2a: $\epsilon = 0 0 0 0 0 0 0 0$
 $\text{Lambda}[8] = 107$
 $\epsilon = 140 120 177 21, \text{LB} = 1342$

Lower bound = 1342, Upper bound = 1342
 Duality gap = 0%
 No Duality Gap!

Upper bound achieved by $Y = 1 1 1 0$,
 i.e., opening plants 1 2 3

Lagrange multipliers

j	1	2	3	4	5	6	7	8
Lambda[j]	392	60	49	120	245	165	204	107

©Dennis Bricker, U. of Iowa, 1997

**Summary of Results
for Example Problem**

		gap
Optimal Solution of SPL =	1342	—
LP Relaxation of Model #1 =	1342	0%
Surrogate Relaxation of Model #3 =	1074	20%
LP Relaxation of Model #2 =	1031.38	23%

©Dennis Bricker, U. of Iowa, 1997