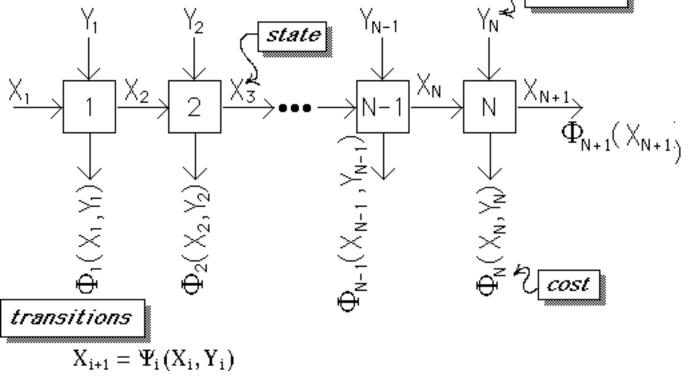


Consider a multi-stage decision process



page 2

If the objective function Φ_i is quadratic in X & Y, and the transition function Ψ_i is linear in X & Y (the QC/LD case), we have a closed-form solution for the problem.

Otherwise, we can try successively approximating the problem by a QC/LD problem.

●D.L.Bricker, U. of IA, 1999

Step 3: Approximate the cost at each stage by the *Taylor series* expansion about up to & including the quadratic terms:

$$\Phi_{i}(X_{i}, Y_{i}) \approx \Phi_{i}(\overline{X}_{i}, \overline{Y}_{i}) + \frac{\partial \Phi}{\partial X_{i}}(\overline{X}_{i}, \overline{Y}_{i})(X_{i} - \overline{X}_{i}) + \frac{\partial \Phi}{\partial Y_{i}}(\overline{X}_{i}, \overline{Y}_{i})(Y_{i} - \overline{Y}_{i})$$

$$+ \frac{1}{2} \left[\frac{\partial^2 \Phi}{\partial X_i^2} (\overline{X}_i, \overline{Y}_i) (X_i - \overline{X}_i)^2 + \frac{\partial^2}{\partial X_i \partial Y_i} \Phi_i (\overline{X}_i, \overline{Y}_i) (X_i - \overline{X}_i) (Y_i - \overline{Y}_i) \right] \\ + \frac{\partial^2 \Phi}{\partial Y_i^2} (\overline{X}_i, \overline{Y}_i) (Y_i - \overline{Y}_i)^2 \right]$$

OD.L.Bricker, U. of IA, 1999

Step 4: Approximate the transition function by a linear function:

$$\begin{split} \mathbf{X}_{i+1} &= \Psi_{i} \left(\mathbf{X}_{i}, \mathbf{Y}_{i} \right) \approx \Psi_{i} \left(\overline{\mathbf{X}}_{i}, \overline{\mathbf{Y}}_{i} \right) + \frac{\partial \Psi}{\partial \mathbf{X}_{i}} (\overline{\mathbf{X}}_{i}, \overline{\mathbf{Y}}_{i}) \left(\mathbf{X}_{i} - \overline{\mathbf{X}}_{i} \right) \\ &+ \frac{\partial \Psi}{\partial \mathbf{Y}_{i}} (\overline{\mathbf{X}}_{i}, \overline{\mathbf{Y}}_{i}) \left(\mathbf{Y}_{i} - \overline{\mathbf{Y}}_{i} \right) \end{split}$$

1/13/99

Step 5: Use the closed-form solution to the QC/LD problem to compute the optimal decisions $\hat{\gamma}_1, \hat{\gamma}_2, \hat{\gamma}_3, \dots \hat{\gamma}_N$

Step 6: Use the transition functions, together with
initial state X₁ and decisions
$$\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, ... \hat{Y}_N$$

to compute the new trajectory
 $\hat{X}_{i+1} = \Psi_i (\hat{X}_i, \hat{Y}_i)$, i=1,2,3,...N
Step 7: If the termination criterion is not satisfied,
let $\bar{X} = \hat{X}$ and $\bar{Y} = \hat{Y}$, and return to
step 2.

@D.L.Bricker, U. of IA, 1999

Example

Minimize $Y_1^4 + X_2^4 + Y_2^4 + X_3^4$ subject to $\begin{cases} X_{i+1} = X_1^2 + 4 Y_i , i=1,2 \\ X_1 = 2 \end{cases}$ $\overline{Y}_1 = -1, \overline{Y}_2 = -0.1$ 1/13/99

Problem Statement

Y = -1, -0.1

OD.L.Bricker, U. of IA, 1999

Test Problem 🛛 Sequential Approximation Method

Number of stages: N = 2

Objective Function

Z T FN XY A Objective Function for SAMDP A Z $\leftarrow (0 \ 1 \ 1) [T] \times XY[1] \star 4$ $\rightarrow 0 \ IF \ N < T$ Z $\leftarrow Z + (1 \ 1 \ 0) [T] \times XY[2] \star 4$ Gradient of Objective Function

```
G+T GRADF XY

A

Gradient of objective function for example problem

A

G+(0 1 1)[T]×4×XY[1]*3

→Last IF N<T \diamond G+G,0 \diamond →0

Last:G+G,(1 1 0)[T]×4×XY[2]*3
```

OD.L.Bricker, U. of IA, 1999

Hessian of Objective Function

```
H+T HESSIAN XY

A

Hessian matrix for objective function

A

H+2 2\rho0

H(1;1)+(0 1 1)(T)×12×XY(1)*2

→0 IF N<T

H(2;2)+(1 1 0)(T)×12×XY(2)*2
```

1/13/99

Transition function

```
Z T PHI XY

\stackrel{\text{R}}{\longrightarrow} Transition function for example problem

\stackrel{\text{R}}{\longrightarrow} Z (XY[1]*2) + 4×XY[2]
```

Gradient of Transition Function

G GT GRADPHI XY $\stackrel{\text{A}}{}$ $\stackrel{\text{A}}{}$ Gradient of transition function for example problem $\stackrel{\text{A}}{}$ $\stackrel{\text{G}}{}$ (2×XY[1]),4

OD.L.Bricker, U. of IA, 1999

Iteration 1

QC/LD Approximation at:

Objective function value is 1.0257

Т	A	В	С	D	Е	F	G	Η	K
0	0	0	6	0	12	7	4	4	-4
1	0	0	0.06	0	0.012	0.0007	0	4	0
2	0.96	0	0	0.512	0	0.0768	0	0	0

GΗ

Κ

Solution of QC/LD Approximation is:

Sum of |Y-Y'| = 0.0332036

OD.L.Bricker, U. of IA, 1999

Iteration 2

QC/LD Approximation at: i 1 2 3 70.267185 713-1 -0.0667964 0Objective function value is 1.00512

 A
 B
 C
 D
 E
 F

 0
 0.6
 0
 12
 7

	0	0	6	0	12	7	4	4	-4
	0	0	0.02677	0		0.0001393			
	0.428328	0	0	0.152591	0	0.0152888	0	0	0
L									

Solution of QC/LD Approximation is:

Sum of |Y-Y'| = 0.0221788

