

OD.L.Bricker, U. of IA, 1999

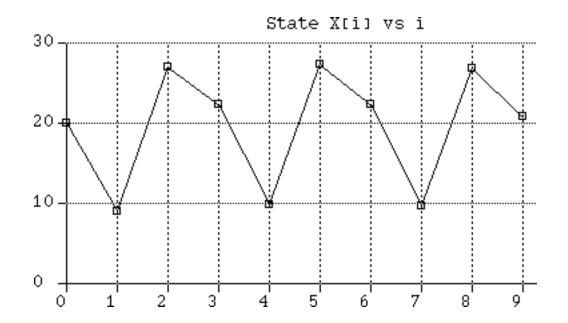
QC/LD Example: Operation of a Reservoir Cost Data i ABC D Ε F $(20-X_t)^2 + (25-Y_t)^2$ $\begin{array}{c} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array}$ -50 0 -40 1025 1234567 1025 $^{-40}$ -50 -40 -40 -40 -50 1025 -50 -50 25 $^{-40}$ 25 -50 -40 -50 -50 1025 -40 Ŝ. 1 0 1 -40 1025-50 where A[i] = coefficient of X[i]*2 D[i] = coefficient of X[i] B[i] = coefficient of X[i]×Y[i] E[i] = coefficient of Y[i] C[i] = coefficient of Y[i]*2 F[i] = constant Cost of final stage: 1×X[N]*2 + -40×X[N] + 400

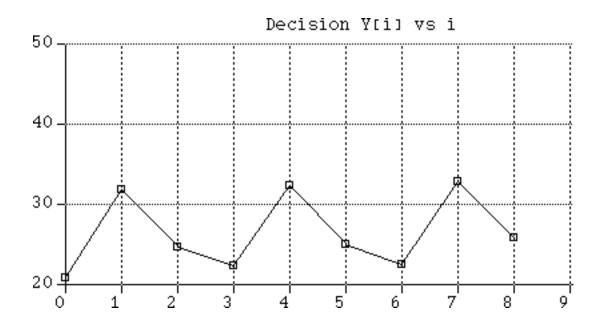
1/13/99

QC/LD Example: Operation of a Reservoir Transition data i G Η Κ $X_{t+1} = X_t - Y_t + I_t$ -1 0 10 1 1 1 12345678 -1 50 -1 20 I_t =10,50,20, 10,50,20,... 1 1 1 1 -1 -1 -1 -1 10 50 20 10 1 -1 50 1 -1 20 where X[i+1] = (G[i]×X[i]) + (H[i]×Y[i]) + K[i]

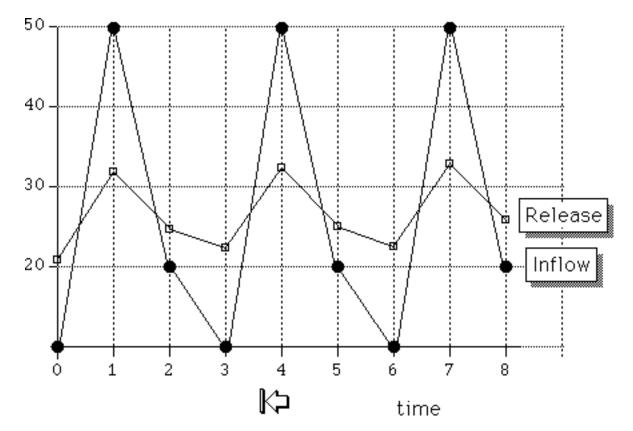
OD.L.Bricker, U. of IA, 1999

i	Р	Q	R	S	Т
0123456789	1.61803 1.61803 1.61803 1.61803 1.61798 1.61765 1.61538 1.6 1.5 1.5	-72.8103 -37.3575 -73.9836 -72.7897 -37.3034 -73.8235 -72.3077 -36 -65 -40	$\begin{array}{r} 1496.49\\ 876.659\\ 1319.55\\ 1271.03\\ 651.124\\ 1090.44\\ 1036.54\\ 415\\ 712.5\\ 400 \end{array}$	0.618034 0.618033 0.618033 0.618026 0.617978 0.617647 0.615385 0.6 0.5 0	8.59483 26.3212 8.0082 8.60515 26.3483 8.08824 8.84615 27 12.5 0


Optimal decision Y[i] = (S[i]×X[i]) + T[i] Optimal value V[i] = (P[i]×X[i]*2) + (Q[i]×X[i]) + R[i] QC/LD Example: Operation of a Reservoir


i	Xi	Yi
0123456789	20 9.04449 27.1335 22.3559 9.93423 27.4468 22.4061 9.77159 26.9086 20.9543	20.9555 31.911 24.7776 22.4217 32.4874 25.0407 22.6345 32.863 25.9543

X[i] = state variable, and Y[i] = decision variable, at stage i


Optimal Cost: 687.497

OD.L.Bricker, U. of IA, 1999

OD.L.Bricker, U. of IA, 1999

