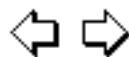


PROJECT MANAGEMENT via NETWORKS

author

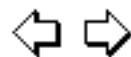
This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu
©copyright, 1997

Project:


a set of complex interrelated tasks directed toward the accomplishment of an objective

Project Management

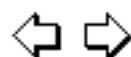
A system of procedures which provides for


- planning
- scheduling
- control

of a project

Important characteristics of Project Management

- forces detailed planning
- improves communications
- identifies potential problem areas
- provides management with timely progress reports
- offers ability to simulate effects of alternate decisions
- assists in long-range planning

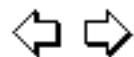

Network Models of a Project

AOA: Activity on Arror model

the tasks (activities) are represented by arcs (arrows) in the network

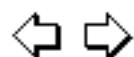
AON: Activity on Node model

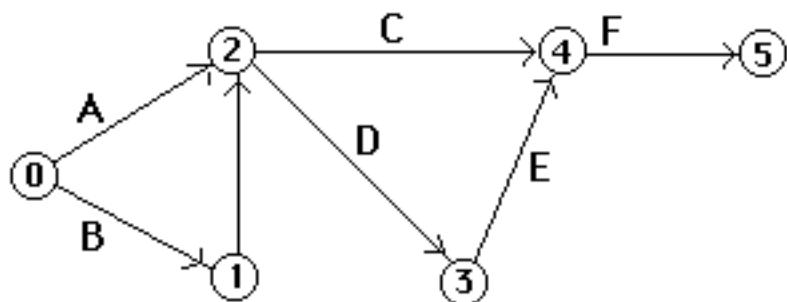
the tasks (activities) are represented by the nodes in the network

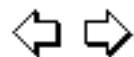
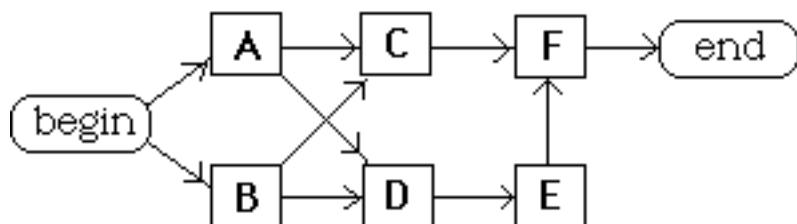
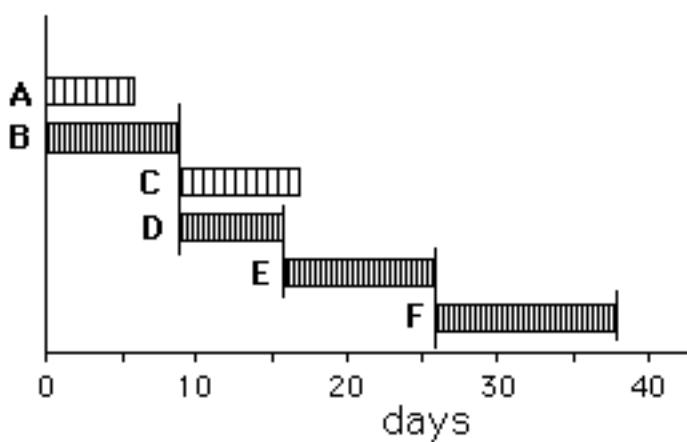


Example

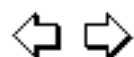
A company is about to introduce a new product (#3). One unit of product #3 is produced by assembling one unit of product #1 and one unit of product #2.


Before production begins on either product #1 or #2, raw materials must be purchased and workers must be trained.


Before products #1&2 can be assembled into product #3, the finished product #2 must be inspected.




Tasks required for completion of project

task	predecessors	duration (days)
A = train workers	none	6
B = purchase raw mat'l's	none	9
C = produce product #1	A,B	8
D = produce product #2	A,B	7
E = test product #2	D	10
F = assemble product #3	C,E	12



AOA model**tasks**

A=train workers
B=purchase raw materials
C=produce #1
D=produce #2
E=test #2
F=assemble #3

AON model**GANTT Chart**

Each activity is represented by a bar, which specifies the beginning and ending of the activity.

What is the shortest time required for the production of product #3?

- If the durations are known with certainty, the project completion time can be found using the Critical Path Method (CPM)
- If the durations of the tasks are random, the project completion time can be estimated using the Program Evaluation & Review Technique (PERT)

CPM – Critical Path Method

PERT – Program Evaluation & Review Technique

SLAM – Simulation of project

“Crashing” – Reducing project completion time

