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In the transportation model, 1t 1s assumed
that no route from one source to a destination
can pass through other sources or destinations

as intermediate points.
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The network is
"bi-partite”, 1.e.
the nodes may be
partitioned into 2
sets, with no arc
between 2 nodes of
Lthe same set.
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"The Transshipment Problem”

We now consider the problem in which
‘transshipments” through other nodes
is allowed.
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‘ Conservation of Flow I

(Material Balance, Kirchoff Equations)

Z}{U‘ B Z}{m=b1
i k

Met flow %
from :
node 1

Total flow |
out of node i |

Total flow |

into node i |
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‘ Conservation of Flow I

Example: )

| ,

-
LTI - Aa1 = by
)= Az + Koz + Rog— A3z = by
- Xz~ Aoz + Xz + A3g = b3
'\ — Koy — Rzgq t X4 = by
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-

Coefficient Matrix of Firchoff Eqns

Az + Xz — K41 = by

J RS + Moz t Aga— Aaz = b
- A1z~ Aoz + Kz + X34 = b3z

. — A24q — Azq T R4 = by

13

(1,2 1,3y (2,3 iz, (3,2 (3,40 (4,1}
+1  +1 -1
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~ode-Arvc
Incidence
Matrix

Coefficient matrix
of Kirchoff Eqns

rows =z nodes + 1

columns =z arcs —1

elements are
+1, 0, or =1

@D .L.Bricker, . of lowa, 1998

~ode-Arc
Incidence
Matrix

column for arc (i,j)
has:
+1 0n row | B
-1 inrow j
0 elsewhere
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~ode-Arvc
Incidence
Matrix

8/26/98

Does not hawve full row rank

(Searr QF rows i5 F
ol of meroes,
HIRA iR SR
canedeTe of
e rows il

Rank is
(#* rows) — |1
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Incidence
Matrix

ExXercise:

Draw the network
with each node-

@0 L.Bricker, L), aof lowa, 1998

~ode-Arc

(1,2 (1,3 (2,3

+1  +1
-1 + 1

-1 -1

Tle T 1 1
incidence matrix il

2,40

(3,20 13,4 (4,1)
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~ode-Arvc
Incidence
Matrix

Exercise:;

wirite the node-arc
incidence matrix for
Lhe network

@D .L.Bricker, . of lowa, 1998

‘ Unimodularity I

A square integer matrix s called umimoduiar
it its determinant is + 1.

— the inverse of a unimodular matrix has only
integer—-valued elements

— if B is unimodular and b 15 integer—-valued,
then the solution =x=B"b of the equation Bx=h
15 integer—valued,

@0 L.Bricker, L), aof lowa, 1998
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‘Wnﬁﬂ Mnnnnﬂuhnﬁhfl

Aninteger matrix A 15 Ladally vrimodular 1t
every square, nonsingular submatrix of A 15
URIMoauiar,

page 7

— If b 1s integer-valued, every basic solution
of the systermn Ax=b Is integer-valued.

@D .L.Bricker, . of lowa, 1998

‘ Whenrenll

Every node—arc incidence matrix is totally
unimodular,

— Ewvery LP whose coefficient matrixz 15
node—arc incidence matrix and whose RHS 15

integer—-valued will have only integer-valued
basic solutions,

@0 L.Bricker, L), aof lowa, 1998
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‘ Examples I

I Fock-[Eottom Discount Stores

I'= Spitzen-Follish Company
I Caterer’s Froblem

I Cpencast Mining

= Stochastic Transportation Froblem

Ka

@D .L.Bricker, . of lowa, 1998

Example: "Rock-Bottom Discount Store:

The company has G stores, and 1s preparing for a
promotion of a certain appliance. Some stores have
an excess of the product, and others a need for
additional units. Given transportation costs for all
routes joining the stores, how should the product
be re-distributed at minimum cost?

@0 L.Bricker, L), aof lowa, 1998
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Fock-[Eottom
Ciscount Stores

SXCEST |
suppli |
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Linear Programming [ableau
(1,2) (2,30 (2,5 (4,3 (4,5 (54 (470 (563 (6,7} (7.,8)

g Ll 1 K 3 1 3 2 g 2 3 1

1) 1 =10
2y | -1 1 1 =l 0O
) -1 -1 =|-3
43 1 1 -1 1 = 2
5 -1 -1 1 1 =l 0
&) -1 1 ={-1
7] -1 -1 1T |=l O
g) -1 |=|-&

@0 L.Bricker, L), aof lowa, 1998
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N =set of nodes of the network

A = set of arcs of the network

Xij = flow in arc (i,j)

Cij = unit cost of flow in arc (i,])

Lij =Tlower bound of flow inarc (i,j)
Uy = upper bound of flow in arc (i,j)

Minimize Z ij}{jj

ini : 1. (i,j)=-A
Minimum-cost| °
~Network Flow | ? Rk 21: Xie =0 ¥ keN
Problem Ly < %oy Uy v (L) € A

@D .L.Bricker, . of lowa, 1998

Minimize 2 CyjXij

st (i,jr=-A
2 Xpj - 2 K =0 vken |
] b

1

Lij= A= Uy v (L)) e A

ASsUmes:.
# no [osses or gains in the arcs

® flow 15 a ‘circulation” in the network... no
accumulation of commodity at a node
Other formulations may have RHS of Kirchoff Eg'ns
which are nonzero.

@0 L.Bricker, L), aof lowa, 1998
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PEELTT T
12,12]

Circulation Model

of Network Flow
@D .L.Bricker, . of lowa, 1998

Example: Crew Scheduling

The Spitzen-Pollish Co.is a contract maintenance firm that
provides and supervises semi-skilled manpower for major
overhauls of chemical processing equipment.

A standard job frequently requires a thousand or more men,
and may extend from one or two weeks to several months.

since the client’'s plant oftenis located inanother city,
Spitzen-Pollish must transport the worlkers to the plant and
provide on-site housing and meals, etc, in addition to wages.

&

@0 L.Bricker, L), aof lowa, 1998
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Fora routine job, Spitzen-Pollish can estimate fairly
accurately the number of crews required on a day-to-day
basis for the job's duration.

The firm may vary the number of crews on-site during the job..
Howewver there are some costs that do not depend upon how
long a crew remains on-site (costs of recruiting, transportation,
training, etc.)

The company may therefore find it more economical to retain
idle crews on-site if they will be required a few days later,

@D .L.Bricker, . of lowa, 1998

Spitzen-Follish Co. LIFP Formulation

Define: Xj; = #* of crews beginning work on-site
at beginning of period 1 and returning
at end of period (j-1J,i.e., beginning
of period j.

Cij = Total operating cost of such a crew.
(Azssume Cyj € Cpe if hei<jak)

= # of crews required during period k
n = length of job (¥ periods) + 1
FE., O 8nas L 8eianiig of period n

@0 L.Bricker, L), aof lowa, 1998
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Spitzen-Follish

n-1 N
Minimize 2 2 CijXi;

i=1 j=i+1 LIF *Aodel
subject Lo n
z }<1j = R1
j=2
k h
2 2 }{1]' =Hy  for k=2,3,4,.. n-2
=1 j=k+1
h-1
_21 Ain = R
1=

Y€ 10,1,2,3,....1 foralli]
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LP Tableau (for n=6) SRS
|G 7 e
U ™y
Sl dudd ey v¥ o 5255 S4 rhs
min| CCCCC|CCCC|CCC|CC|C| O O O
LT
2] R -1
3] 11 R -1
4] 1 1 N -1
5] 1 1 o1
Mote subsoripls of O Not a node-arc
were anniled for ncidence matrix?

ol Bt e ]
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min| CCCCC|CCCC|CCCICC|C| 0O O 0 pEass
111 =| R,

2) /T R R I -1 = R,

3) RN B R R A -1 =| R4

4) I I R -1 1=| R4

=) 1 1 R =| Rsg

Make the following transformation:

subtract row 1 from row 2 toobtainrow 2
2 1" " "
3
4

@D .L.Bricker, . of lowa, 1998

3
2
=

3
4I
=

The equations obtained in this way are implied by

the original set of equations.

Many of the "1"s are eliminated by this
transformation, and some "=1"s are introduced;

subtract row 1 from row 2 toobtainrow 2

11

l

l

(.

1

1
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min| CCCCC|CCCC|CCC|[CC]C] O O O s
P 1111 =| R,

2') | -1 1111 -1 = Ra-Ry

3| - -1 11 - =| R:-R,
4') -1 -1 -1 I I -1 |=| R4-Rs
5') -1 -1 -1 -1 =] RsRa4

The resulting tableau, equivalent Lo the original, has
a constraint coefficient matrix very nearly that of a
node-arc incidence matrix (i.e., +1 and =1 in all but
o columns, which have a +1 but no - 1J!

@D .L.Bricker, . of lowa, 1998

mn| CCCCCI|CCCC|CCC|CC|C| O 0 O g
SIS BRI =| R,

2') | -1 111 -1 =| R,-R,
3 - -1 11 - =| Rs-R,
4') -1 -1 -1 11 1 -1 1=| R4-R;
5" -1 N 1 |=] Rs-Ra

sum all of the constraints, and negate both sides of
the resulting equation... If a column already has a
+1,-1 pair, the sum is zero. Otherwise, we obtain
the needed -1

6") -1 -1 -1 -1]-1 =| -R=

@0 L.Bricker, L), aof lowa, 1998
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mn| CCCCC|CCCC|CCC|CC|C| O 0 0O pamaa
IR NI IR ER =| R,

2') | -1 1111 -1 = Ra-Ry
30 - -1 11 -1 =| R:-R,
4') -1 -1 -1 11 I -1 |=| R4-Rs
5 ) -1 -1 | -1 -1 I |=| Rs-Ry4
6") -1 -1 -1 -1]-1 =| -Ksg

We nowy have an equivalent formulation of the

Spitzen-Follish problerm which 15 a network problem!

gt 1s the gonegrance ol he neiwori ¥

@D .L.Bricker, . of lowa, 1998

Fhe nelWort Will Rave ane nade g rowy of 1he
ST =T IS L

rerrrEire

‘éﬁ gj \""m e -R
C%EE 83 /7?:\'[/'8,_1 UE 3

A

Define: 8,=R,-Ry

7 RosIETe,
s weill e

83 = RS _F'?..E
84 =R4Rs & Siil 1 FE

8= RsRy4 ST,
L ,.-’:.-#H 17 E;?-'-TF E’t .-'?||_",:',,
& Jemmand
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Because this 15 a network problem with integer
right-hand-side, any basic LP solution (in
particular, the optimal LP solution) will be
integer—valued.

&
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Example: Caterer’s FProblem

A catering service must provide napkins for
dinners on each of T consecutive days.
The number required on day t i3 Dy.
Requirements may be met by

® purchasing new napkins, at cost €y each

® |aundering napkins soiled at an earlier dinner,
Two types of laundry service are available:

¢ regular:  costs Cz each, 1 days reqguired

® special: costs €, each, v davys required
No salvage value for Mate: Cz<Chr<Cyl
napkins after day T. <3 N

@0 L. Bricker, L. af lowa, 1222




Sample [Lata (Caterer’s Froblem)

4 davys

2 days (one-day service)
| day (overnight service)
$2.00 for new napkins

C = $1.40 for overnight laundry service
C = $0.90 for regular laundry service

Day t. Wwed Thurs Fri Sat
Rgmt: 400 620 975 800

Cecision ¥ariables:

P; = # napkins purchased on day t

Ri = # napkins sent to regular laundry on dav t
5: = ¥ napkins sent to special laundry on day t
Uy = # soiled napkins stored at end of day t

Vi = ¥ clean napkins stored at end of dav t

@0 L.Bricker, L), aof lowa, 1998
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Lenasiiion oFf OfeF0n NEniine belore qinner
Ry;+ 5S¢+ Vg + P = Dy +
. » - — e

avallable for use on day t tobe stored
used  clean

Lhenasifion of solied napiins srier dinner.

Constraints

sent Lo stored soiled napkins
laundry dirty

@D .L.Bricker, . of lowa, 1998

Constraint *Matrix:
B RS UM ERS ULV, K S;U VB U, rhs

1 -1 450)
1 - -1 (S0
1 1 1 -1 Q75
1 1 1] a5
11 450
-1 11 B50
1 1] Q75
1 1| &850
Mol & node e Theidehee maieiy . Can i b

(AR FLed fo prodiice ane ’

@0 L.Bricker, L), aof lowa, 1998
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Constraint MMatrix:
Negale pali Siaes of 1he Lap poriion of 1he malriy

H R1 51 U1 vI I:]E RESEUEVE I:l3 SEUEME I:]-*-'l U-*-’l

8/26/98

rhs

- 450
- 630

- 975
- &30

l

450
650

975
ao0

FAe PESUE TS e RES e & ROGe =T IRCTTEnce

Ley i ar ko

@D .L.Bricker, . of lowa, 1998

Constraint Matrix:
A F e row QRIS B egEl g sy o olher rows:

H R1 51 U1 Il\”'HII pE RESEUEvE I:l3 SEUEMS p-*—'l U4

rhs

page 20

b B — [T
|

l

-1

- 450
- 630

- 975
- 850

4=0
G50

975
1] 850

S i L

1

-1 O

@0 L.Bricker, L), aof lowa, 1998
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Caterer’'s Problem: Network Model

@D .L.Bricker, . of lowa, 1998

Note: the caterer's problem originated
in a military context:
Aidrplane engines must be serviced
after every mission (or replaced)
Engine service can be performed
overnight at higher cost, otherwise
is performed the next dav
The number of daily missions has been
planned far in advance

&

@0 L.Bricker, L), aof lowa, 1998
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Cpencast MAining FProblem

e A company has obtained permission to opencast
mine ("strip mine") within a square plot 200
meters on each side.

e Angle of slip of so1l 15 such that sides of excavation
may not be steeper than 45

e Company decides to consider the problem as one of
extracting rectangular blocks

@D .L.Bricker, . of lowa, 1998
The blocks are i%
- ‘| | | | | level I
selected to lie e | [lewel 277"
above one another A [level 5
:,1;” :’-"rq ]_ _|IEUEI 4

ke so;

Restrictions imposed by the
angle of slip means that it
is possible only to

excavalte blocks forming

an “inverted pyramid”

@0 L.Bricker, L), aof lowa, 1998
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8/26/98

The company has estimates for
the walue of the ore in various
places at various depths.

Using these estimates, each block
has a certain net income

= (revenue from sale of ore) - (cost of excavating,

extracting, & refining)

Which Bfocks showld
be excavaled?

@0 L.BNCKEer, L. OT 10w, 1995

4

8

LEDEL 1

9 o112

1415|116

18
21
24

19
22
25

LEVEL 2

First, number the A3 1411516 |

hlocks:

Define;

1if block i
15 excavaled
0 otherwise

R; =net income from
block

123 ]| 2425 |

Yi

(BT

cE

27
29

LEDEL 3

30

LEVEL 4

@0 L.Bricker, L), aof lowa, 1998

N
Objective: Maximize 21 Ri Y
1=
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Block Numbers REevenue
2|34 ololo|%
- 6 (7|8 = (o]|1]|0|%
= |9 [10f11]12 o [-1]-1]35|-2
—l —l
13141516 Example A AR
Data
~ (171819 ~ oy
— —

W 20(21|22 w004
= [23|24|25 Excawvation Cost /Block = -z]-2]-s
Level Cost

) )
— (26|27 1 3 = |18
= 2 3 =
w |28(29 |2
-l 3 & -l
= ¢ 10 oo
= (30 o (20
= =
Il ndad
— —

@D .L.Bricker, . of lowa, 1998

Constraints |

A113 [14]15]16 |

2 4
~ 6|7 |8| fxamoie
="
= (9 10)11]12| Block 17 cannot 25124125 |
1314)1s)16| be excavaled unless £
blocks 1,2,2,&0
~N P8I are excavated: 28] 29]
= [20{21]22 £ e a——
= YooYy [
= [23]24]25 7= 1 7= 'z
" Yi7< Ys, Y78 g ﬁ
~ (26 (27
e . . - .
W 28129 Sikewiss, Form 830 OOk i levels
+ 2O & e nfigin < sUch Consirsinis,
E 30
[S¥]
—
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Size of Problem:

#* of Variables:

[f the number of blocks and number of levels
were increased by using a smaller grid, the
number of binary variables and constraint

8/26/98

increases dramatically!

Sfution 38 an (nieger programmmny probien
GUICK IV Becamas exoriitant /v expensive 1o
compiitel

@D .L.Bricker, . of lowa, 1998

30 integer (binary) variables
#* of Constraints: 4 x 14 =356 inequalities

page 25

Lot s use a smalfer version 1o study the strictire

af the probfes:

LEDVEL 1

LEVEL 2

10|11

1213

LEUEL 3

14

@0 L.Bricker, L), aof lowa, 1998

{‘w’m <Y,
Yo £ Y4
{YH <Yy
Y1 &Y
{Wz <Yy
Yz <Y
{"‘ﬂs < Yg
Yiz £ Vg
{VM < Mg
Yig < Y2

_;::

Lo I -
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B [
RN
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oy
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B | ™
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n
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1 2 3 45 6 7 8 9 10 11 12 13 14

[ ‘ o8

Constraint, | ' _ ! (|6

Matrix | | ‘ -

2o - 1 1 : D

- 1 | |

_ z ]

70 ml ! -

Fonarent - | } X g

nelwork -1 1 |0

siructvre! ml 1 -

1 } il 0

-1 | 0

 put -1 1 £ 0

i -1 1 £ 0

cofasider 1 11| o

the dusf -1 1 «|o0

of the [P ST IR B I
refaxationt -

plus Yie{0, 119 |

@D .L.Bricker, . of lowa, 1998

Cual ILIF:

MIN| OO ODOO0OOQ|00 00|00 O0OO0O(OOO0OO(1T11T 11111111111

w00 =] T A W —
|
|
|
|

10111 1 -1 1
11 1111 -1 1

- 111 1 -1 1

1
—
—
[t | R L Y LERN I T P L R T LT LY LT LY

Fhis is ALNOST 7 pode-8rc derived f“f e
ircidence matrix! Srived Tram v

@0 L.Bricker, L), aof lowa, 1998
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e will oblarn 7 node-arc incrdence matrix 17 we
8 splfract surpivs varisiles o convert fo egusfrons
8 5T & row = pegainve of s of i conrsirainis
MIN|Oooojoooojoooo|loooo|oo0oo|1 1111111111111
1 [-1 R
2 -1 -1 z E;
3 o 1 : | Rz
4 -1 -1 1 1 : | R4
5 -1 -1 - -1 1 L
- 3
6 -1 -1 1 : | Rg
7 -1 1 = E?
g -1 -1 1 | Ry
9 -1 1 : | Ra
mfi111 1 -1 1 * | By
11 1 1 1 1 -1 1 ki E”
12 111 1 -1 1 : [ Rya
13 111 1 -1 1 |: | Rz
14 1111 1z |Ryg
. )
y
ST F thase rows will He sennd
@D .L.Bricker, . of lowa, 1998
For what network 1s this the node-arc incidence
matrix’
MIN|OoOOoojoooojoooo|loooo|ooaoal|t1t11111111111
1 [-1 1 R
2| -1 -1 1 s
3 - i Rz
4 -1 -1 1 i * | R4
a -1 -1 - -1 1 *|p
& -1 -1 1 - Ez
! -1 1 o E?
g -1 -1 1 H' Fa
q -1 1 Rao
10 77171 1 -1 1 F1p
11 111 1 -1 1 : F14
12 111 1 1 1 . | Rz
13 11 1 1 E‘IE
14 111 14| R4
15 111111111 ER;

@0 L.Bricker, L), aof lowa, 1998

These columns are negative
of the preceding 14 columns!
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For each block, there 1s a node, whaose "supply” 15 Rj

(dernand if
Ri{D]

LEVEL 1

In addition,

there is a

"super’ node
15

with "dermand”

= E;F%

@D .L.Bricker, . of lowa, 1998

There is an arc from each block to each of the 4
blocks abowve

LEVEL 1

@0 L.Bricker, L), aof lowa, 1998
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There is a pair of arcs between each block and # 15

LEVEL 1

Objective is
to minimize
flowy 1nto
node # 15

@D .L.Bricker, . of lowa, 1998

After solving the network problem, the
solution of the original problem is obtained
from the dual variables (simplex multipliers).

Because min-cost network flow problems are
very efficiently solved by the network simplex
method, while general-purpose branch-and-
bound algorithms are very time-consuming,
large versions of this problem can be solved
only as network problems!

@0 L.Bricker, L), aof lowa, 1998
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Anolher formulaiion.

The Ffeur constraints

H‘Iﬂ‘,-‘i 'l‘I'IIIE, YI?i "‘I"llEl

may be replaced by the single constraint
'ql"'l"llI?i l"'l'lll1 ‘|‘l"'|"llg'I'l"'l"ll5-|-l"'|""EI

since Y,-=1 15 feasible in this constraint as/y 7
"‘I"III :HHEZVE:HI"{E, =1

@D .L.Bricker, . of lowa, 1998

Using these alternate constraints, our sample
problem's formulation is reduced in size from

ob linear constraints to only 14

Howewver, whereas in the earlier formulation the
integer restrictions can be relaxed and the problem
solved as a min-cost network flow problem,

the new formulation will reguire the use of an
integer programming algorithrn such as branch-and-
bound.

The computalional efrori will be increased oy
several oraers of magnitvde!

&
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