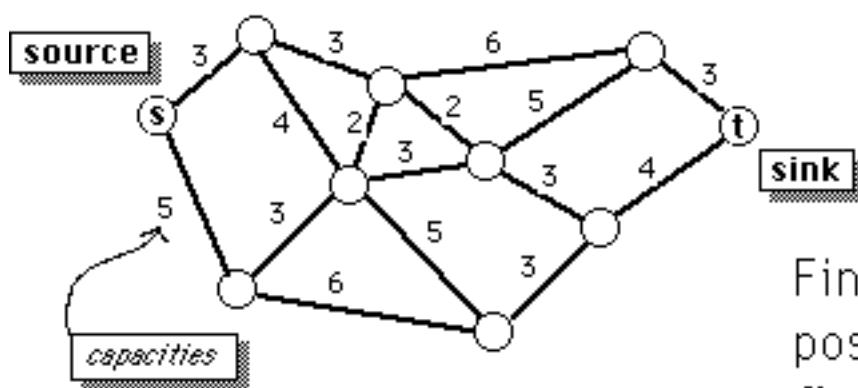


MAXIMUM FLOW PROBLEM

Maximum Flow Problem



Find the maximum possible amount of flow in the network from the source **s** to the sink **t**

ALGORITHM

Given: a network with designated source & sink,
each arc having a capacity in each direction.
(Capacity of arc (i,j) need not equal that of (j,i))

Step 0 Initially, let the flow in each arc be zero.

Step 1 Find any path from source to sink that
has positive flow capacity (in direction of
flow) for every arc in the path. If no such
path exists, STOP.

*(For example, try to construct a
spanning tree, using only arcs
with positive capacity.)*

©D.L.Bricker, U. of Iowa, 1998

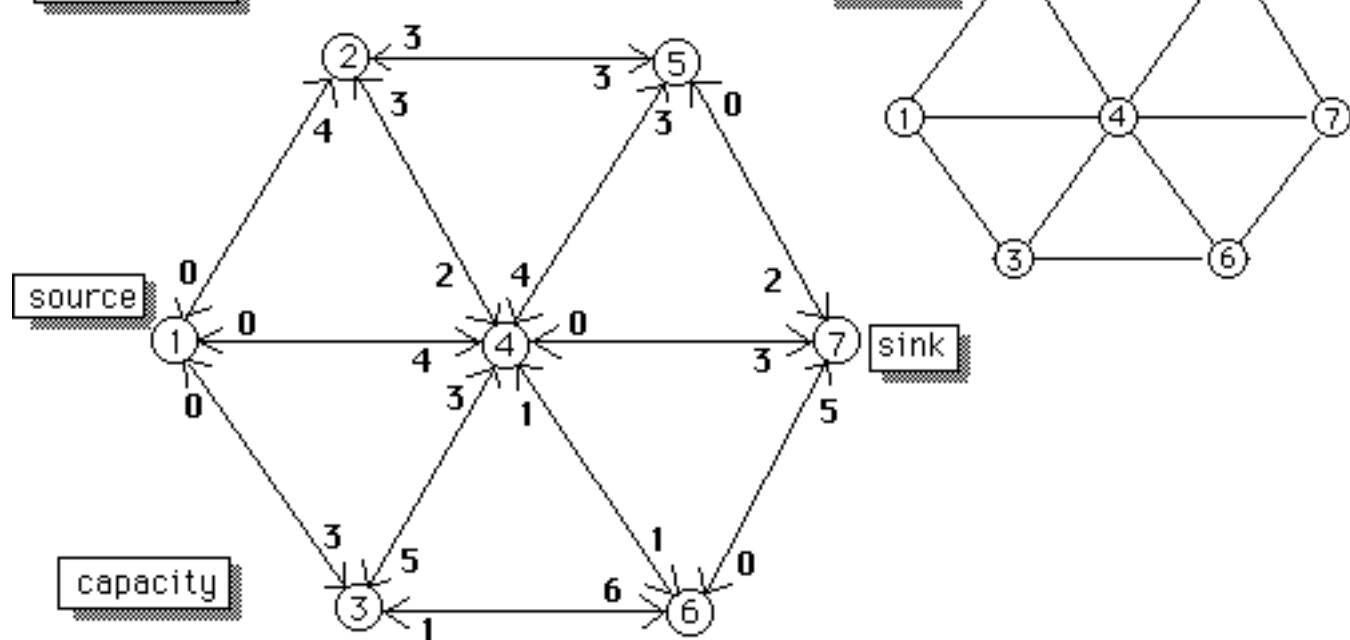
Step 2 Find the smallest arc capacity k on this
path (*the flow-augmenting path*). Increase the
flow in this path by k .

Step 3 For each arc in the flow-augmenting path,
reduce all capacities in the direction of the flow
by the amount k , and **increase** all capacities in
the direction opposite the flow by k .

Return to Step 1.

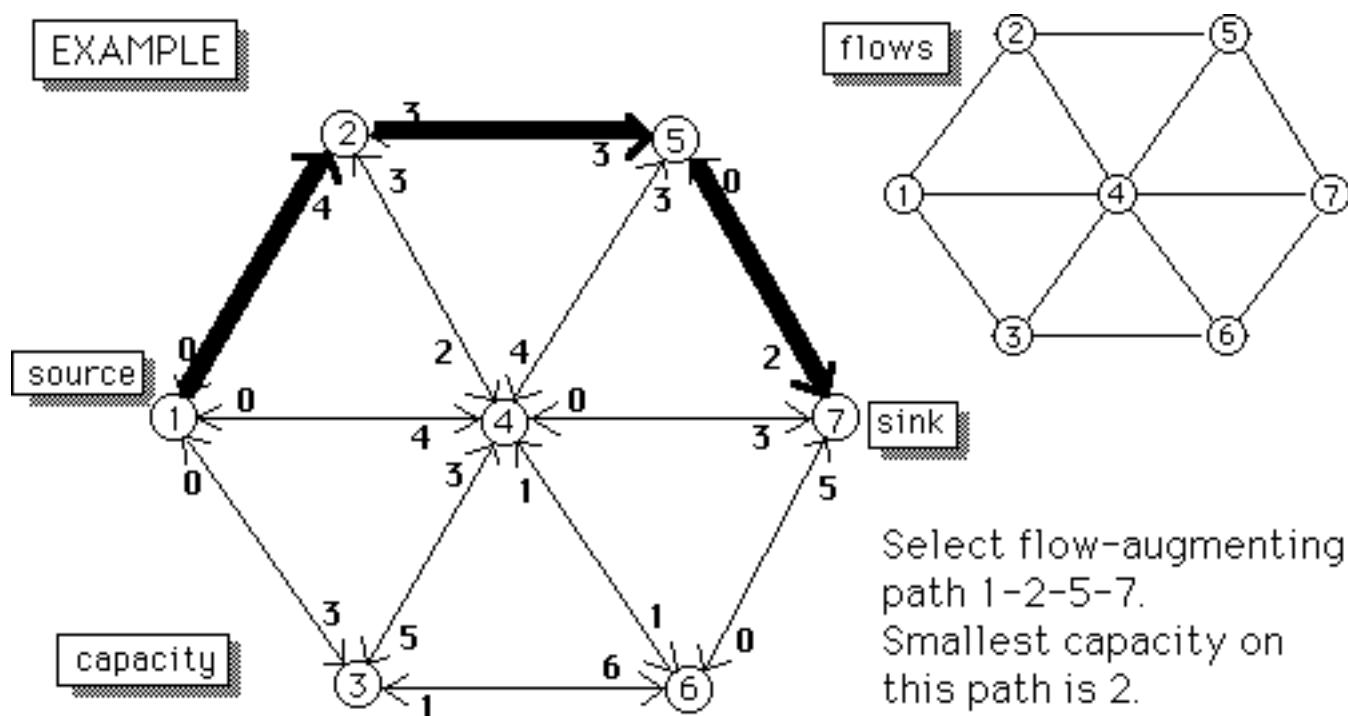
©D.L.Bricker, U. of Iowa, 1998

EXAMPLE



©D.L.Bricker, U. of Iowa, 1998

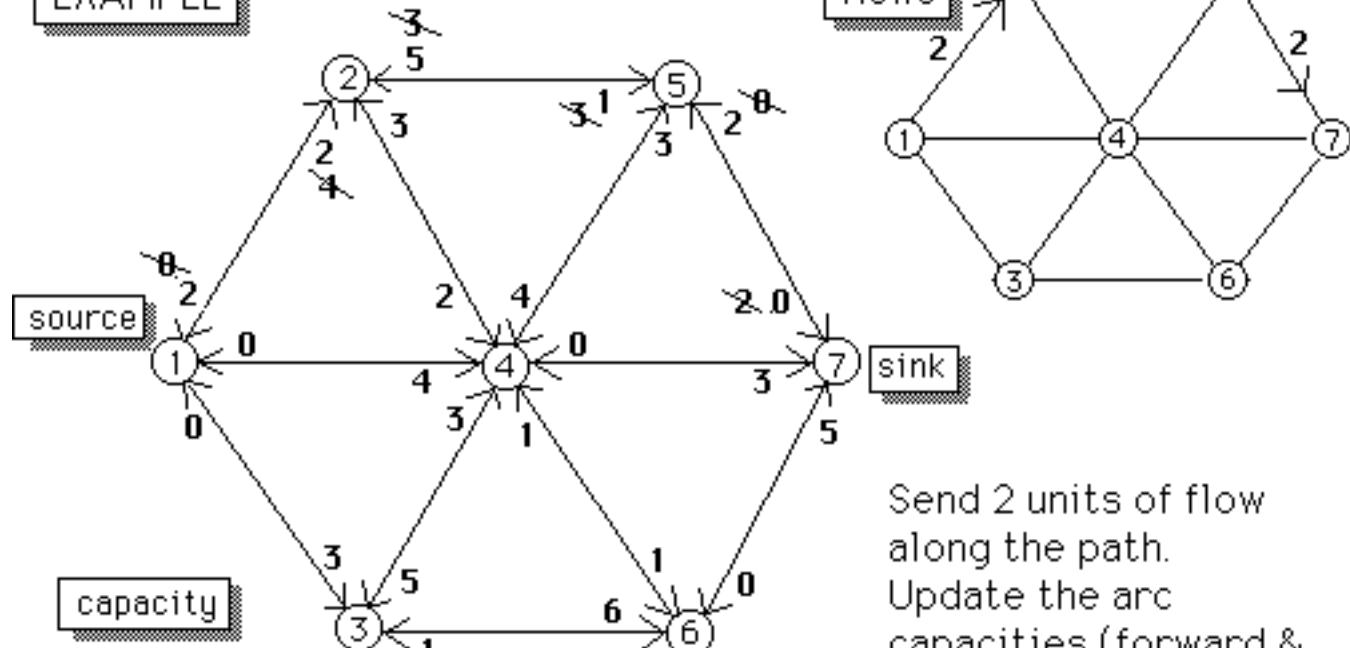
EXAMPLE



ITERATION #1

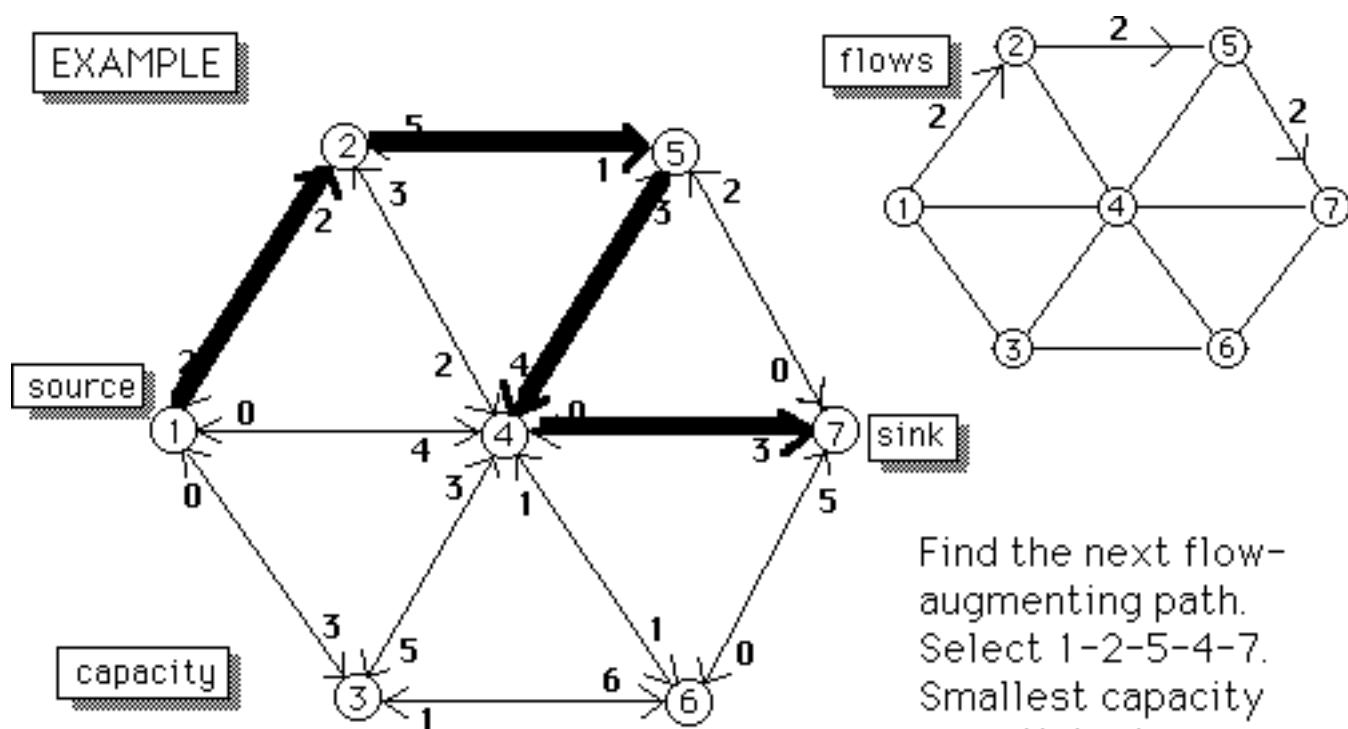
©D.L.Bricker, U. of Iowa, 1998

EXAMPLE



©D.L.Bricker, U. of Iowa, 1998

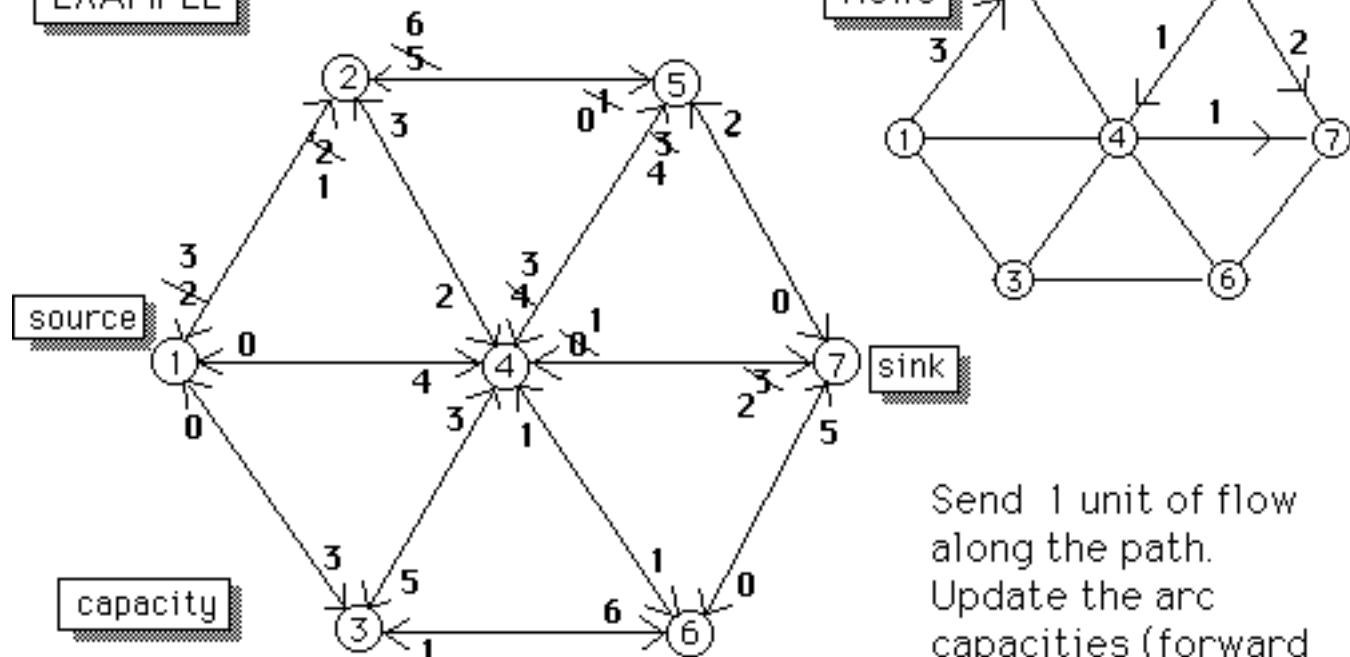
EXAMPLE



ITERATION #2

©D.L.Bricker, U. of Iowa, 1998

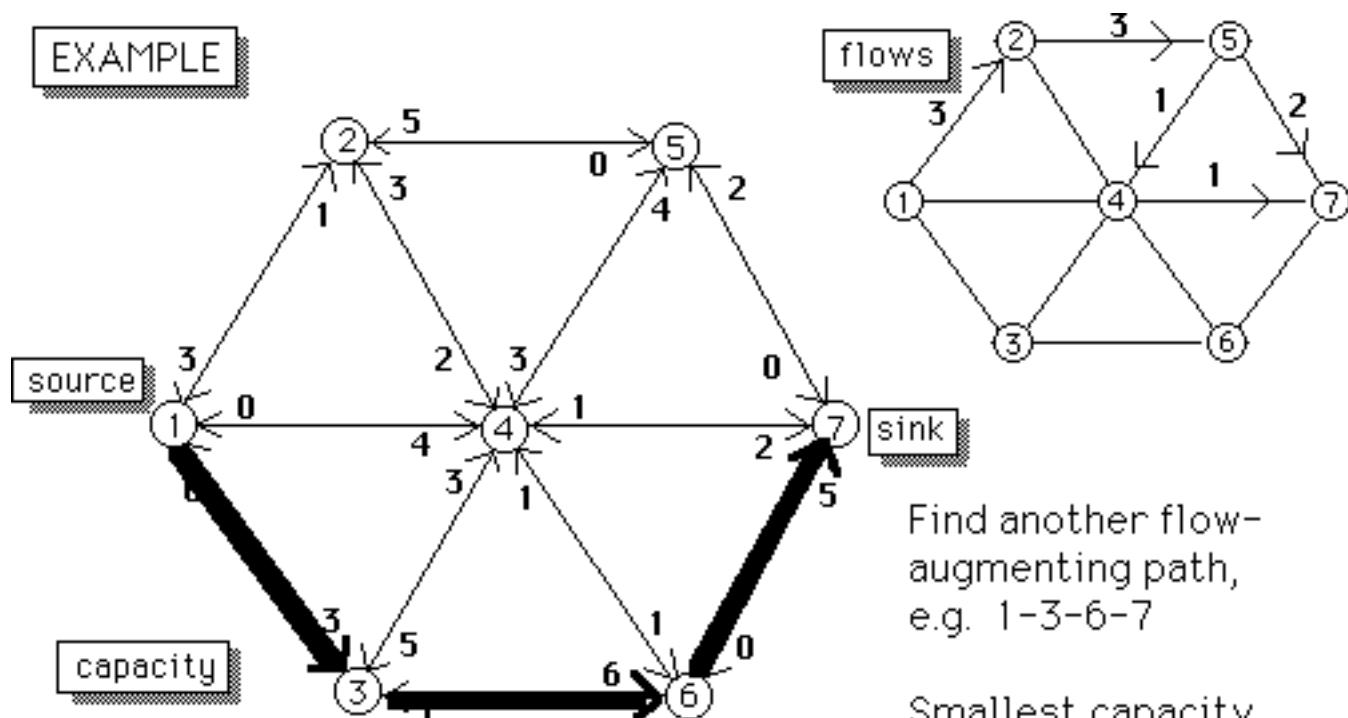
EXAMPLE



Send 1 unit of flow along the path.
Update the arc capacities (forward & backward) along the path.

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE



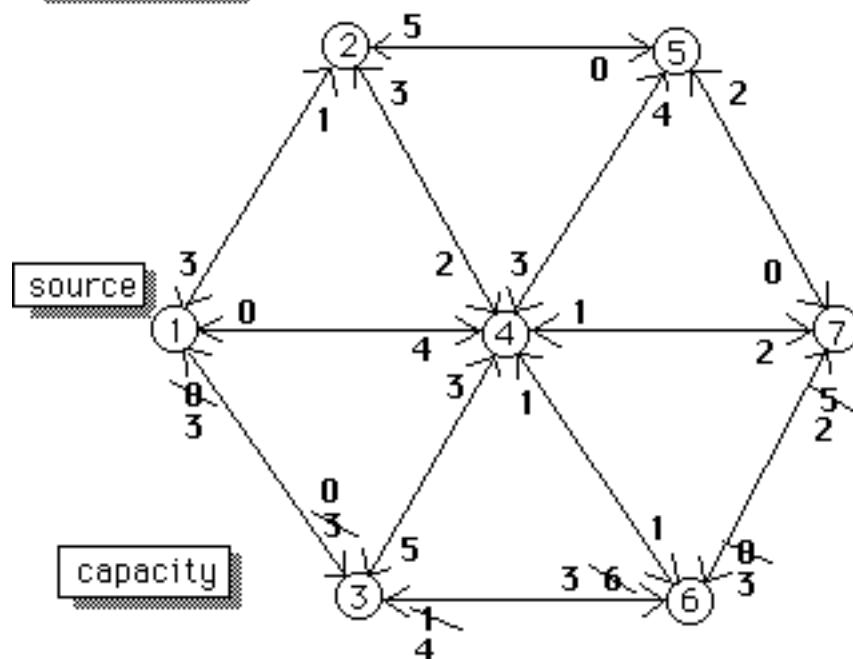
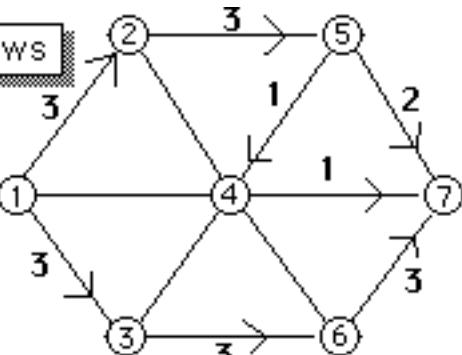
Find another flow-augmenting path,
e.g. 1-3-6-7

Smallest capacity along path is 3.

ITERATION #3

©D.L.Bricker, U. of Iowa, 1998

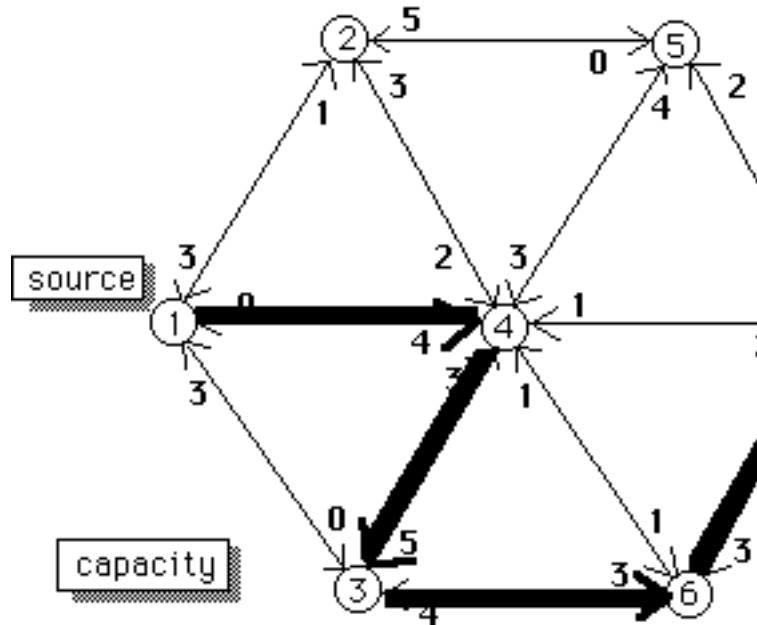
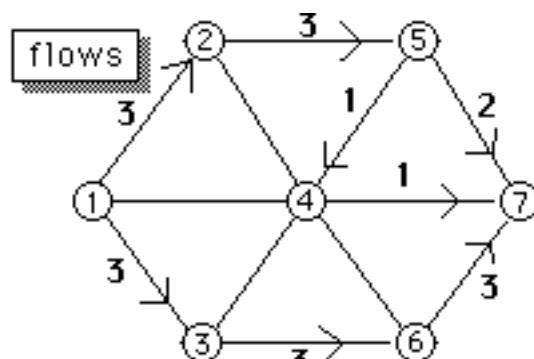
EXAMPLE



Send 3 units of flow along the path
Update the capacities along the path (forward & backward.)

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE



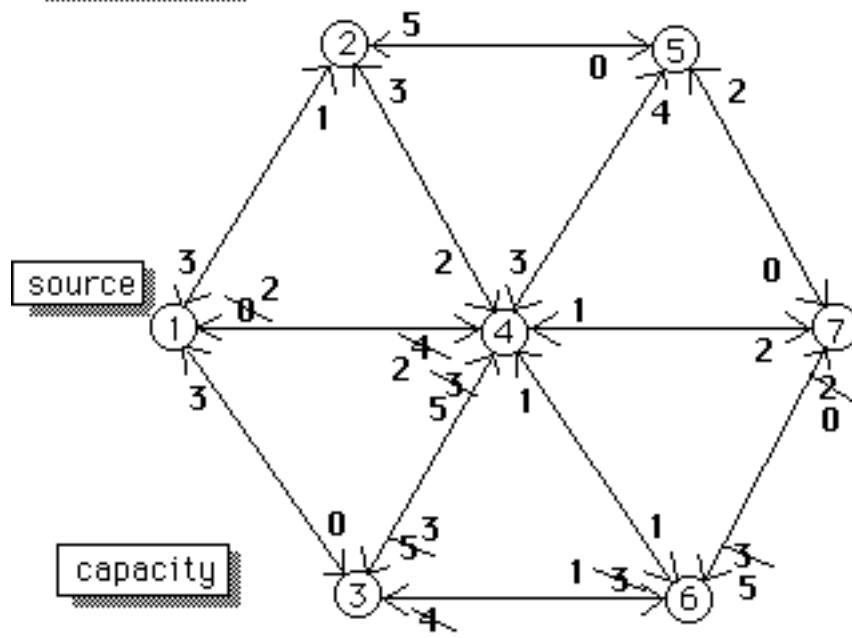
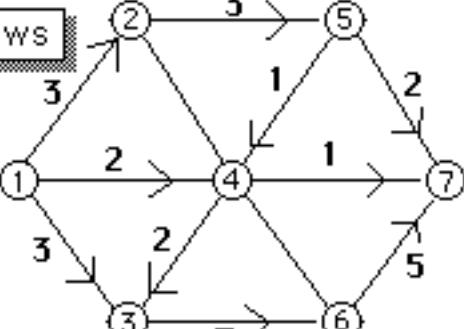
Find another flow-augmenting path, e.g., 1-4-3-6-7.

Smallest capacity along the path is 2.

ITERATION #4

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE

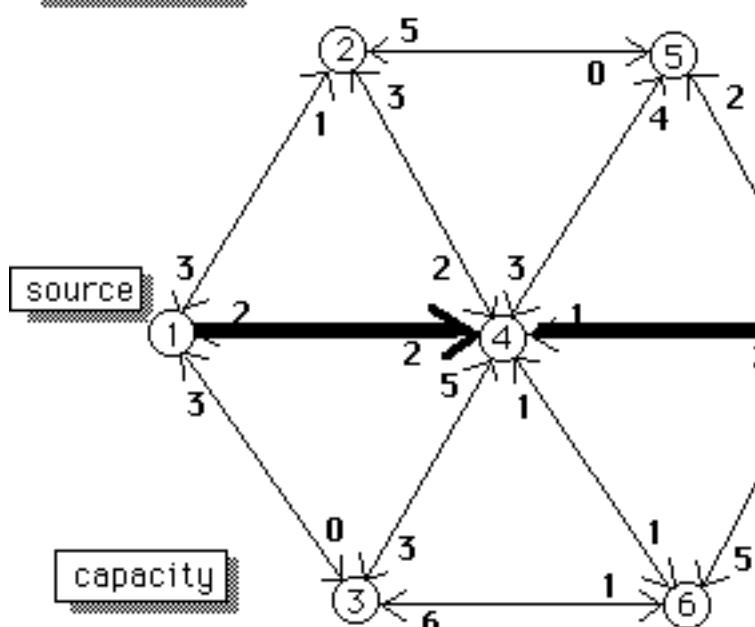
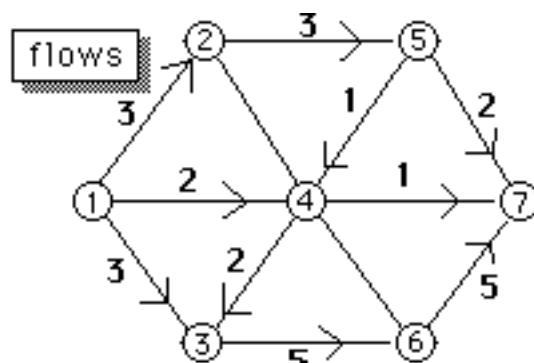


Send 2 units of flow along the path.

Update the capacities (forward & backward) along the path.

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE

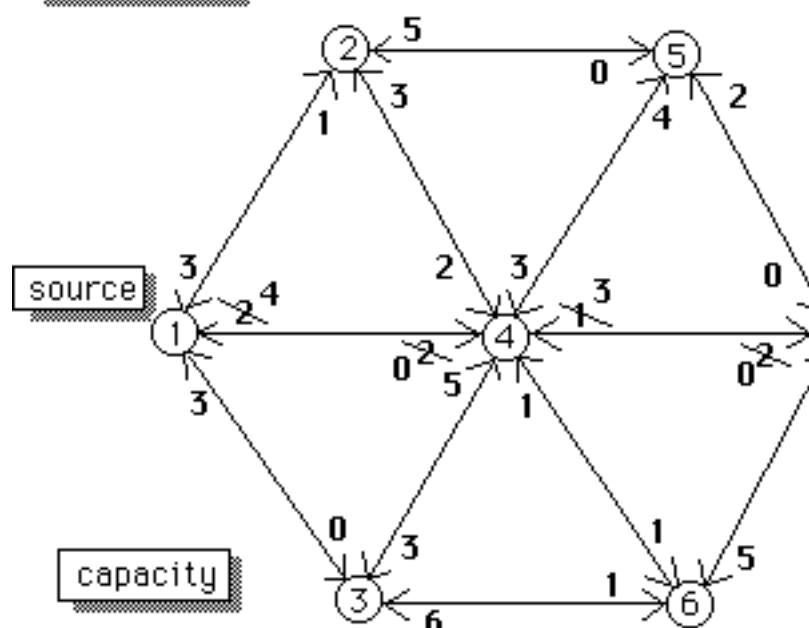


Find the next flow-augmenting path, e.g., 1-4-7.

Smallest capacity along this path is 2.

ITERATION #5

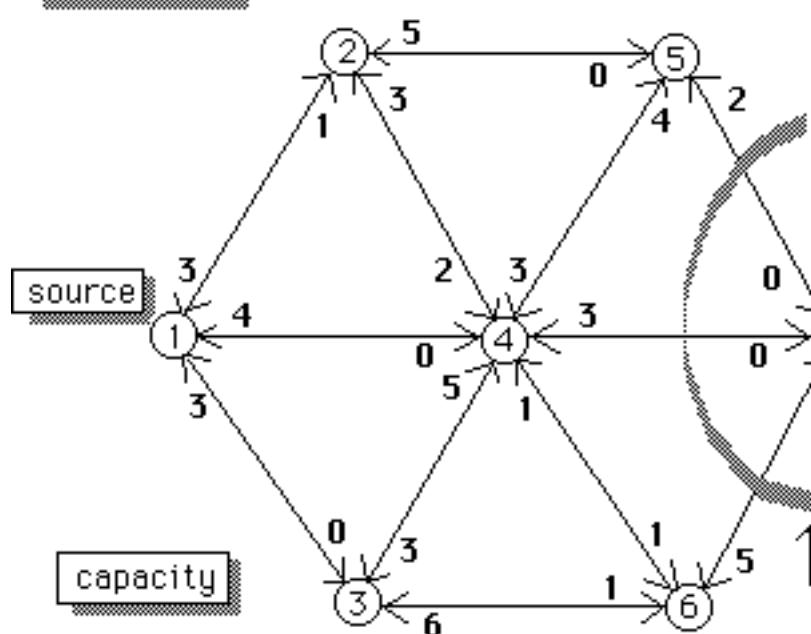
©D.L.Bricker, U. of Iowa, 1998

EXAMPLE

Send 2 units of flow along this path.

Update the capacities (forward & backward).

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE

No flow-augmenting path can now be found.

Capacity across this "cut" is zero!

ITERATION #6

©D.L.Bricker, U. of Iowa, 1998

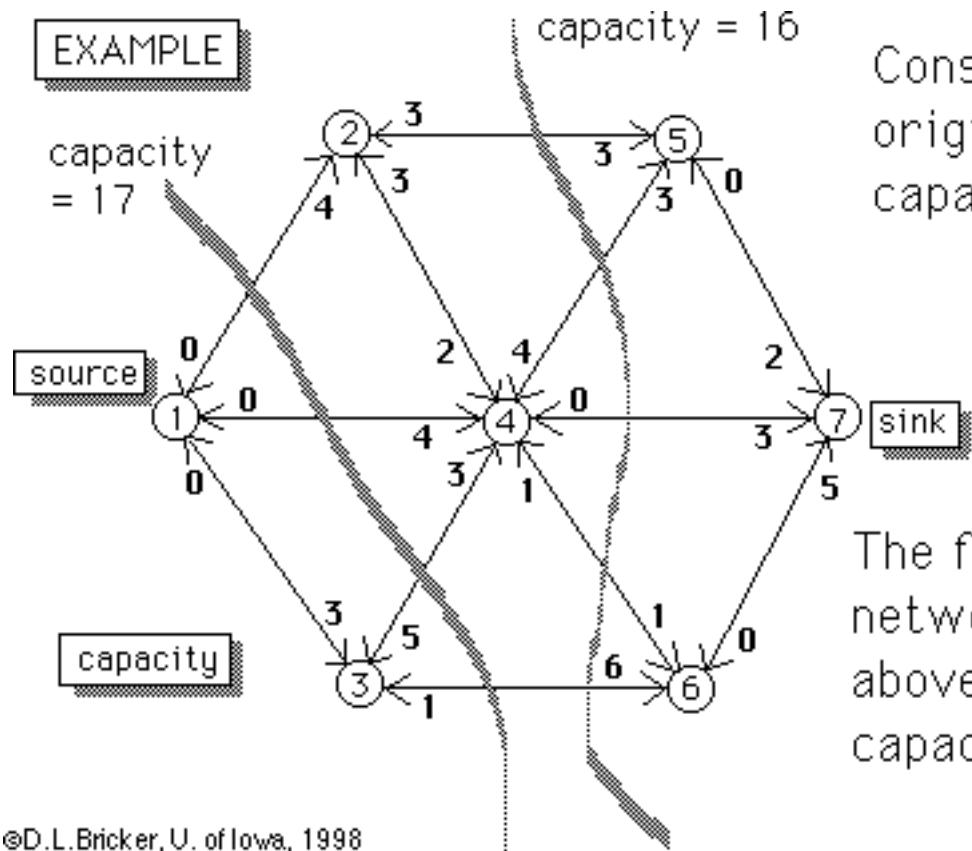
Definition

A *cut* of a network is a partition of the node set N into 2 subsets, N_1 and N_2 , such that

- $N = N_1 \cup N_2$,
- $N_1 \cap N_2 = \emptyset$,
- the source node is in N_1 ,
- the sink node is in N_2

The *capacity* of the cut is $\sum_{i \in N_1} \sum_{j \in N_2} c_{ij}$

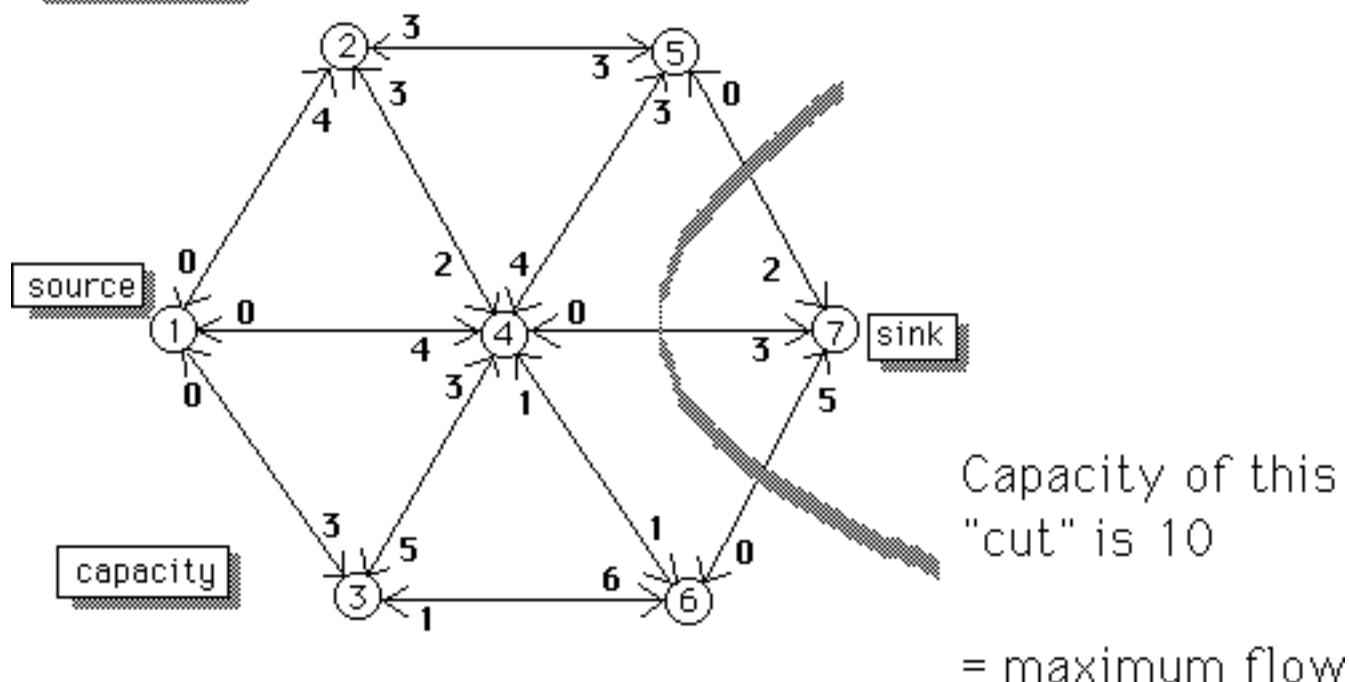
©D.L.Bricker, U. of Iowa, 1998



Consider the original arc capacities

The flow in a network is bounded above by the capacity of any cut.

©D.L.Bricker, U. of Iowa, 1998

EXAMPLE

©D.L.Bricker, U. of Iowa, 1998

MAX-FLOW/MIN-CUT THEOREM

The maximum flow in a network is equal to the capacity of the cut having the minimum cut capacity.

©D.L.Bricker, U. of Iowa, 1998