
MDP Policy Improvement

Policy-Iteration Algorithm without Discounting

Optimizes the "average", i.e., expected, cost or return per period in steady state.

Policy-Iteration Algorithm with Discounting

Optimizes the present value of all future expected costs

Policy-Iteration Algorithm without Discounting

For each policy R=($k_1, k_2, ..., k_n$), define $\pi^R = (\pi_1^R, \pi_2^R, ..., \pi_n^R)$ to be the steady state distribution using policy R

- $\mathbf{g}(\mathbf{R}) = \sum_{i \in S} \pi_i^{\mathbf{R}} \mathbf{C}_i^{\mathbf{k}_i}$ to be the expected cost per stage (in steady state) if policy R is used.
- vⁿ_i(R) = total expected cost during the next n stages if the system starts in state i & follows policy R رح

$$\mathbf{v}_i^n(\mathbf{R}) = \mathbf{C}_i^{k_i} + \sum_{j \in \mathbf{S}} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j^{n-1}(\mathbf{R})$$

For "large" n,

$$\mathbf{v}_i^n(R) \approx n \mathbf{g}(R) + \mathbf{v}_i(R)$$

where

 $\mathbf{v}_i(\mathbf{R})$ = effect on total expected cost (to ∞) due to the system's starting in state i

@Dennis Bricker, U. of Iowa, 1998

$$\mathbf{g}(R) + \mathbf{v}_i(R) = \mathbf{C}_i^{k_i} + \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j(R) \quad \forall i \in S$$

Given a policy R, this will be a system of n linear equations with n+1 unknowns, i.e.,

$g(R), v_1(R), v_2(R), \dots v_n(R)$

To find a solution, therefore, we may assign an arbitrary value (usually zero) to one of the unknowns $\mathbf{v}_i(\mathbf{R})$, say $\mathbf{v}_n(\mathbf{R})$

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: **Value Determination** Solve the system of linear equations $\mathbf{g}(\mathbf{R}) + \mathbf{v}_i(\mathbf{R}) = \mathbf{C}_i^{k_i} + \sum_{i \in \mathbf{S}} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j(\mathbf{R}) \quad \forall j \in \mathbf{S}$

for $\mathbf{g}(R), \mathbf{v}_1(R), \mathbf{v}_2(R), \dots \mathbf{v}_{n-1}(R),$

letting $v_n(R) = 0$

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 2: **Policy Improvement** Find an improved policy R' such that $\mathbf{R}' = (\mathbf{k}'_1, \mathbf{k}'_2, \dots \mathbf{k}'_n)$ and $\mathbf{C}_i^{\mathbf{k}'_i} + \sum_j \mathbf{p}_{ij}^{\mathbf{k}'_i} \mathbf{v}_j(\mathbf{R}) \le \mathbf{g}(\mathbf{R}) + \mathbf{v}_i(\mathbf{R}) \quad \forall i \in S$ with strict inequality for at least one state i. If no such improved policy exists, stop; otherwise, return to step 1.

$$C_i^{k'_i} + \sum_j p_{ij}^{k'_i} \mathbf{v}_j(R) \leq g(R) + \mathbf{v}_i(R) \quad \forall i \in S$$

follow policy R.

expected cost if at _____ expected cost if, beginning stage 1 we take at stage 1, we follow action k;, and then policy R

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

State		Action
1 Town A 2 Town B 3 Town C	1 Cruise 1 Cruise 1 Cruise	
g(R) = -9.2	2 i Vi	
	1 2 3	-1.33333 -7.46667 0

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R)+Vi(R) = ~10.5333

k	name		C'	ΔC
1 2 3	Cruise Cabstand Wait for	call	-10.5333 -8.43333 -5.51667	0 2.1 5.01667

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

Υ

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #1, Cruise g(R)+Vi(R) = ~16.6667

k	name	C'	ΔC
1	Cruise	⁻ 16.6667	0
2	Cabstand	-21.6167	-4.95

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #1, Cruise g(R)+Vi(R) = -9.2

k	name	C'	ΔC
1	Cruise	-9.2	0
2	Cabstand	-9.76667	-0.566667
3	Wait for call	-5.96667	3.23333

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

State	Act:	ion	
	1 Cruise 2 Cabstand 2 Cabstand		
g(R) = -13.1515	i	Vi	
	1 2 3	3.87879 -12.8485 0	

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #1, Cruise g(R)+Vi(R) = -9.27273

k	name		C'	ΔC
1 2 3	Cruise Cabstand Wait for	call	-9.27273 -12.1439 -4.88636	0 -2.87121 4.38636

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand

g(R) + Vi(R) = -26

k	name	C'	ΔC
1	Cruise	-14.0606	11.9394
2	Cabstand	-26	0

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

.

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand g(R)+Vi(R) = -13.1515

k	name		C'	ΔC
1 2 3	Cruise Cabstand Wait for	call	-9.24242 -13.1515 -2.39394	3.90909 0 10.7576

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

State	State		ction 🕷
1 Town A 2 Town B 3 Town C	2	Cab Cab	ostand ostand ostand
g(R) = -13.3445	[i	Vi
		1 2 3	1.17647 -12.6555 0

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #1, Town A

Current Policy: action #2, Cabstand g(R)+Vi(R) = -12.1681

[k	name		C'	ΔC
	1 2 3	Cruise Cabstand Wait for	call	-10.5756 -12.1681 -5.53782	1.59244 0 6.63025

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #2, Town B

Current Policy: action #2, Cabstand g(R)+Vi(R) = -26

k	name	C'	ΔC
1	Cruise	-15.4118	10.5882
2	Cabstand	-26	0

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

Taxicab Problem

Policy Improvement Step: Evaluation of alternate actions

State #3, Town C

Current Policy: action #2, Cabstand g(R)+Vi(R) = ~13.3445

k	name	C'	ΔC
1	Cruise	-9.86975	3.47479
2	Cabstand	-13.3445	0
3	Wait for cal	1 -4.40861	8.93592

C'[k] = cost if action k is selected for one stage Δ C[k] = improvement (if <0)

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm with Discounting

©Dennis Bricker, U. of Iowa, 1998

Policy-Iteration Algorithm

Step 0: Initialization

Start with any policy R.

Step 1: Value Determination

Solve the system of linear equations

$$\begin{aligned} \mathbf{v}_i(R) &= \mathbf{C}_i^{k_i} + \beta \sum_{j \in S} \mathbf{p}_{ij}^{k_i} \mathbf{v}_j(R) \quad \forall i \in S \\ \mathbf{v}_1(R), \mathbf{v}_2(R), \dots \mathbf{v}_n(R) \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1998

for

Policy-Iteration Algorithm

Step 2: **Policy Improvement** Find an improved policy R' such that $R' = (k'_1, k'_2, ..., k'_n)$ and $C_i^{k'_i} + \beta \sum_j p_{ij}^{k'_i} v_j(R) \leq v_i(R) \quad \forall i \in S$ (when minimizing)with strict inequality for at least one state i. If no such improved policy exists, stop; otherwise, return to step 1.