



The "knapsack problem" is a classical OR problem which is simply stated but difficult, with a wide variety of areas of application.

| Maximize   | $\sum_{i=1}^{N} \mathbf{V}_{i} \mathbf{X}_{i}$                 |
|------------|----------------------------------------------------------------|
| subject to | $\sum_{i=1}^{N} \mathbf{W}_{i} \mathbf{X}_{i} \leq \mathbf{C}$ |
|            | $X_i \ge 0$ & integer                                          |

where  $W_i > 0$ 

Given N items, each with known weight  $W_i$ and value  $V_i$ , i=1,2,... N,



which items should be included in a knapsack with maximum weight capacity C so as to maximize the value of the knapsack contents without exceeding its capacity?



An important special case is the *zero-one* knapsack problem, in which each X is restricted to values of either zero or one, e.g., the marginal value of any additional units of an item after the first is zero. (If preparing for a hiking expedition, the value of two boxes of matches is no greater than one box!)

Knapsack Problem





| þ |
|---|
|   |

the trim (cutting-stock) problem

🖙 capital budgeting