

Knapsack Problem

Copyright 1997 by:
Dennis Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@caen.uiowa.edu

The "knapsack problem" is a classical OR problem which is simply stated but difficult, with a wide variety of areas of application.

$$\begin{aligned} \text{Maximize} \quad & \sum_{i=1}^N V_i X_i \\ \text{subject to} \quad & \sum_{i=1}^N W_i X_i \leq C \\ & X_i \geq 0 \text{ & integer} \end{aligned}$$

where $W_i > 0$

Given N items, each with known weight W_i and value V_i , $i=1,2,\dots, N$,

which items should be included in a knapsack with maximum weight capacity C so as to maximize the value of the knapsack contents without exceeding its capacity?

An important special case is the *zero-one* knapsack problem, in which each X is restricted to values of either zero or one, e.g., the marginal value of any additional units of an item after the first is zero. (If preparing for a hiking expedition, the value of two boxes of matches is no greater than one box!)

Optimizing algorithms fall into two main categories:

- dynamic programming**
- branch-and-bound**

Applications

- the trim (cutting-stock) problem
- capital budgeting