

FLOWSHOP SCHEDULING

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

2-Machine Flow Shop

We wish to sequence n jobs,
each requiring processing on
machine #1, followed by
machine #2.

p_{ij} = processing time for job i on machine $#j$

makespan = total amount of time required to
complete processing of all n jobs

Objective: Sequence the jobs so as to minimize
the makespan

EXAMPLE

JOB	Processing time (hrs)	
	Machine #1	Machine #2
1	2	6
2	7	3
3	9	7
4	11	5
5	7	10
6	4	8

Suppose we schedule the jobs for the sequence {1,2,3,4,5,6}

makespan
= 54

Can we reduce the makespan by changing the sequence of the jobs?

sequence {1,2,3,4,5,6}

Job	Machine 1		Machine 2	
	s	f	s	f
1	0	2	2	8
2	2	9	9	12
3	9	18	18	25
4	18	29	29	34
5	29	36	36	46
6	36	40	46	54

s = start time, f = finish time
Makespan = 54

Johnson's Algorithm

-an optimizing algorithm for scheduling the 2-machine flow shop, assuming that *no passing* is allowed (i.e., jobs are processed in the same sequence on both machines)

-constructs a sequence by "growing" it from both ends (front and back)

step 0 Initialize $S_0 = S_1 = \emptyset$ and $I = \{1, 2, 3, \dots, n\}$

step 1 Find $\min_{i \in I, j \in \{1, 2\}} \{p_{ij}\} = p_{\hat{i}\hat{j}}$

step 2 If $\hat{j} = 1$, then $S_0 = S_0, \hat{i}$ (i.e., append job \hat{i} to the beginning of the sequence)
 Otherwise (i.e., $\hat{j} = 2$), $S_1 = \hat{i}, S_1$ (i.e., append job \hat{i} to the end of the sequence)

Step 3 Remove \hat{i} from I . If $I \neq \emptyset$ then go to step 1.
 Else the optimal sequence is $S = S_0, S_1$

EXAMPLE

$S_0 = S_1 = \emptyset$ and
 $I = \{1, 2, 3, 4, 5, 6\}$
 Minimum p_{ij}
 is p_{11}
 Therefore,
 $S_0 = \{1\}$, $S_1 = \emptyset$
 $I = \{2, 3, 4, 5, 6\}$

JOB	Processing time	
	Machine 1	Machine 2
1	2	6
2	7	3
3	9	7
4	11	5
5	7	10
6	4	8

Minimum p_{ij}
is p_{22}

Therefore,
 $S_0 = \{1\}$, $S_1 = \{2\}$
 $I = \{3, 4, 5, 6\}$

JOB	Processing time	
	Machine 1	Machine 2
2	7	(3)
3	9	7
4	11	5
5	7	10
6	4	8

Minimum p_{ij}
is p_{61}

Therefore,
 $S_0 = \{1, 6\}$
 $S_1 = \{2\}$
 and

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
4	11	5
5	7	10
6	(4)	8

$I = \{3, 4, 5\}$

Minimum p_{ij} is p_{42}

Therefore,
 $S_0 = \{1, 6\}$
 $S_1 = \{4, 2\}$

and

$$I = \{3, 5\}$$

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
4	11	5
5	7	10

Minimum p_{ij} is $p_{51} = p_{32}$

Therefore,

$S_0 = \{1, 6, 5\}$
 $S_1 = \{3, 4, 2\}$

and $I = \emptyset$

JOB	Processing time	
	Machine 1	Machine 2
3	9	7
5	7	10

The optimal sequence is

$$S = S_0 \cup S_1$$

$$= \boxed{1 \mid 6 \mid 5 \mid 3 \mid 4 \mid 2}$$

Optimal Sequence = {1,6,5,3,4,2}

Job	Machine 1		Machine 2	
	s	f	s	f
1	0	2	2	8
6	2	6	8	16
5	6	13	16	26
3	13	22	26	33
4	22	33	33	38
2	33	40	40	43

s = start time, f = finish time

Makespan = 43

Optimal Sequence = {1,6,5,3,4,2}

**3-Machine
Flow Shop**

Special conditions under which Johnson's Algorithm can be used to minimize the makespan:

- All jobs are to be processed on Machines #1, 2, & 3 in that order
- The processing time on Machine #2 is dominated either by the time on Machine #1 or Machine #3.

either $\min \{p_{i1}\} \geq \max \{p_{i2}\}$
or $\min \{p_{i3}\} \geq \max \{p_{i2}\}$

JOB	Processing Times (hrs)		
	Machine A	Machine B	Machine C
1	10	6	7
2	8	2	6
3	5	2	10
4	6	6	7
5	8	5	8

Processing times on machine 2 are dominated by those on machine 3

EXAMPLE

$$5 = \min \{p_{i1}\} < \max \{p_{i2}\} = 6$$

$$6 = \min \{p_{i3}\} \geq \max \{p_{i2}\} = 6$$

Application of Johnson's Algorithm to 3-Machine Problem

Define two "dummy" machines, 1' and 2', with processing times

$$p_{i1'} = p_{i1} + p_{i2}$$

$$p_{i2'} = p_{i2} + p_{i3}$$

Apply Johnson's Algorithm to the two-machine problem with these two dummy machines. The resulting sequence is optimal for the 3-machine problem.

Original Data:

JOB	MACHINE		
	A	B	C
1	10	6	7
2	8	2	6
3	5	2	10
4	6	6	7
5	8	5	8

"Dummy" Machine Data:

JOB	MACHINE	
	1'	2'
1	16	13
2	10	8
3	7	12
4	12	13
5	13	13

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined:

Processing Times

<u>i</u>	<u>1</u>	<u>2</u>
1	16	13
2	10	8
3	7	12
4	12	13
5	13	13

The sequence found by this algorithm is: 3 4 5 1 2

The sequence is guaranteed to be optimal!

Optimal Schedule:

Job	Machine 1		Machine 2		Machine 3	
<u>i</u>	<u>s</u>	<u>f</u>	<u>s</u>	<u>f</u>	<u>s</u>	<u>f</u>
3	0	5	5	7	7	17
4	5	11	11	17	17	24
5	11	19	19	24	24	32
1	19	29	29	35	35	42
2	29	37	37	39	42	48

s = start time, f = finish time
Makespan = 48

Optimal Sequence:

Makespan = 48, Sequence: 3 4 5 1 2

Compare with an arbitrary sequence:

Makespan = 54, Sequence: 1 2 3 4 5

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

5 Jobs, 3 Machines

Processing Times

i	1	2	3
1	6	1	6
2	16	7	16
3	13	7	12
4	6	19	13
5	16	12	17

*Times on
machine 2 are
NOT dominated
by either
machine 1 or 3!*

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined:

Processing Times

i	1	2
1	7	7
2	23	23
3	20	19
4	25	32
5	28	29

The sequence found by this algorithm is: 1 2 4 5 3

*Not guaranteed to be
optimal!*

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Makespan = 90, Sequence: 1 2 4 5 3

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1		Machine 2		Machine 3	
<u>i</u>	<u>s</u>	<u>f</u>	<u>s</u>	<u>f</u>	<u>s</u>	<u>f</u>
1	0	6	6	7	7	13
2	6	22	22	29	29	45
4	22	28	29	48	48	61
5	28	44	48	60	61	78
3	44	57	60	67	78	90

s = start time, f = finish time

Makespan = 90

**Branch-and-Bound
Algorithm for
3-Machine
Flowshop Problem**

-suggested by Ignall & Schrage

Suppose that the first r jobs in the sequence have been tentatively fixed:

$$J_r = \{ j_1, j_2, \dots, j_r \}$$

Denote by \bar{J}_r the set of $(n-r)$ jobs not yet sequenced.

Let $\text{TIME1}(J_r)$, $\text{TIME2}(J_r)$, and $\text{TIME3}(J_r)$ be the times at which machines 1, 2, & 3 (respectively) complete processing the jobs in J_r .

Lower Bounds on makespan of all completions of the partial sequence J_r :

$$\text{TIME1}(J_r) + \sum_{i \in \bar{J}_r} p_{i1} + \min_{i \in \bar{J}_r} \{ p_{i2} + p_{i3} \}$$

Makespan if the job with shortest processing times on machines 2&3 need not wait

$$\text{TIME2}(J_r) + \sum_{i \in \bar{J}_r} p_{i2} + \min_{i \in \bar{J}_r} \{ p_{i3} \}$$

Makespan if the job with least time on machine #3 need not wait

$$\text{TIME3}(J_r) + \sum_{i \in \bar{J}_r} p_{i3}$$

Makespan if no job needs to wait for machine #3

Example

Suppose
 $J_1 = \{1\}$

JOB i	Machine Processing Time		
	1	2	3
1	14	12	13
2	8	5	3
3	1	20	2
4	6	1	1

$$J_1 = \{1\}$$

$$TIME3(J_1) = 39$$

$$TIME3(J_r) + \sum_{i \in J_r} p_{i3}$$

JOB i	Machine Processing Time		
	1	2	3
1	14	12	13
2	8	5	3
3	1	20	2
4	6	1	1

6

$$J_1 = \{1\}$$

$$TIME2(J_1) = 26$$

$$TIME2(J_r)$$

$$+ \sum_{i \in J_r} p_{i2} + \min_{i \in J_r} \{p_{i3}\}$$

JOB	Machine Processing Time			
	i	1	2	3
1	14	12	13	
2	8	5	3	
3	1	20	2	
4	6	1	1	

$$J_1 = \{1\}$$

$$TIME1(J_1) = 14$$

$$TIME1(J_r) + \sum_{i \in J_r} p_{i1} + \min_{i \in J_r} \{p_{i2} + p_{i3}\}$$

JOB	Machine Processing Time			
	i	1	2	3
1	14	12	13	
2	8	5	3	
3	1	20	2	
4	6	1	1	

**Branch-and-Bound
Algorithm for
3-Machine
Flowshop Problem**

Branching will be done by choosing the next job to be added to the end of sequence J_r :

$$J_{r+1} = J_r \cup \{i_{r+1}\}$$

for each possible value of $i_{r+1} \in \bar{J}_r$

**Branch-and-Bound
5-job, 3-machine
Sequencing Problem**

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Using Johnson's algorithm, job sequence is: 1 2 4 5 3
Makespan is 90, our original incumbent.

We now begin the branch-&-bound algorithm

*** New incumbent: 89 ***

Optimal sequence is 1 4 2 3 5
CPU time = 31.8 sec.
subproblems enumerated = 53

*compared to
5! = 120
total sequences
(44.2%)*

Optimal Schedule

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1		Machine 2		Machine 3	
i	s	f	s	f	s	f
1	0	6	6	7	7	13
4	6	12	12	31	31	44
2	12	28	31	38	44	60
3	28	41	41	48	60	72
5	41	57	57	69	72	89

s = start time, f = finish time

Makespan = 89

Optimal Schedule:

Makespan = 89, Sequence: 1 4 2 3 5

Branch-and-Bound
5-job, 3-machine
Sequencing Problem

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Using Johnson's algorithm, job sequence is: 1 2 4 5 3
Makespan is 90, our original incumbent.

We now begin the branch-&-bound algorithm

Subproblem number 0: $J =$

Subproblem number 1: $J = 1$
Completion times: 6 7 13
Lower bounds: 76 64 71

Subproblem number 2: $J = 1, 2$
Completion times: 22 29 45
Lower bounds: 76 79 87

Subproblem number 3: $J = 1 \ 2 \ 3$
 Completion times: 35 42 57
 Lower bounds: 86 86 87

Subproblem number 4: $J = 1 \ 2 \ 3 \ 4$
 Completion times: 41 61 74
 Lower bounds: 86 90 91
 --- Fathomed by bound ---

Subproblem number 5: $J = 1 \ 2 \ 3 \ 5$
 Completion times: 51 63 80
 Lower bounds: 89 95 93
 --- Fathomed by bound ---
 --- Subproblem 3: Fathomed by enumeration --

Subproblem number 6: $J = 1 \ 2 \ 4$
 Completion times: 28 48 61
 Lower bounds: 76 79 90
 --- Fathomed by bound ---


```

Subproblem number 7: J= 1 2 5
Completion times: 38 50 67
Lower bounds: 76 88 92
--- Fathomed by bound ---
--- Subproblem 2: Fathomed by enumeration ---

Subproblem number 8: J= 1 3
Completion times: 19 26 38
Lower bounds: 80 77 84

Subproblem number 9: J= 1 3 2
Completion times: 35 42 58
Lower bounds: 86 86 88

Subproblem number 10: J= 1 3 2 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---

Subproblem number 11: J= 1 3 2 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---

--- Subproblem 9: Fathomed by enumeration ---

```


Subproblem number 12: $J = 1 \ 3 \ 4$
Completion times: 25 45 58
Lower bounds: 80 80 91
--- Fathomed by bound ---

Subproblem number 13: $J = 1 \ 3 \ 5$
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound ---

--- Subproblem 8: Fathomed by enumeration ---

Subproblem number 14: $J = 1 \ 4$
Completion times: 12 31 44
Lower bounds: 76 69 89

Subproblem number 15: $J = 1 \ 4 \ 2$
Completion times: 28 38 60
Lower bounds: 76 69 89

Subproblem number 16: $J = 1 \ 4 \ 2 \ 3$
Completion times: 41 48 72
Lower bounds: 86 77 89

*NEW
INCUMBENT!* --- Subproblem 16: Fathomed by enumeration

Subproblem number 17: $J = 1 \ 4 \ 2 \ 3 \ 5$
Completion times: 57 69 89
*** New incumbent: 89 ***
--- Subproblem 16: Fathomed by enumeration ---

Subproblem number 18: $J = 1 \ 4 \ 2 \ 5$
Completion times: 44 56 77
Lower bounds: 76 75 89
--- Fathomed by bound ---

--- Subproblem 15: Fathomed by enumeration ---

Subproblem number 19: $J = 1 \ 4 \ 3$
Completion times: 25 38 56
Lower bounds: 80 73 89
--- Fathomed by bound ---

Subproblem number 20: $J = 1 \ 4 \ 5$
Completion times: 28 43 61
Lower bounds: 76 69 89
--- Fathomed by bound ---

--- Subproblem 14: Fathomed by enumeration ---

Subproblem number 21: $J = 1 \ 5$
Completion times: 22 34 51
Lower bounds: 76 79 92
--- Fathomed by bound ---
--- Subproblem 1: Fathomed by enumeration ---

Subproblem number 22: $J = 2$
Completion times: 16 23 39
Lower bounds: 64 68 87

Subproblem number 23: $J = 2 \ 1 \ 1$
Completion times: 22 24 45
Lower bounds: 76 74 87

Subproblem number 24: $J = 2 \ 1 \ 3 \ 3$
Completion times: 35 42 57
Lower bounds: 86 86 87
--- Fathomed by bound ---

Subproblem number 25: $J = 2 \ 1 \ 3 \ 4$
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---

Subproblem number 26: $J = 2 \ 1 \ 3 \ 5$
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 24: Fathomed by enumeration --

Subproblem number 27: $J = 2 \ 1 \ 4$
Completion times: 28 47 60
Lower bounds: 76 78 89
--- Fathomed by bound ---

Subproblem number 28: $J = 2 \ 1 \ 5$
Completion times: 38 50 67
Lower bounds: 76 88 92
--- Fathomed by bound ---

--- Subproblem 23: Fathomed by enumeration ---

Subproblem number 29: $J = 2 \ 3$
Completion times: 29 36 51
Lower bounds: 64 74 87

```
Subproblem number 30: J= 2 3 1
Completion times: 35 37 57
Lower bounds: 86 81 87
    Subproblem number 31: J= 2 3 1 4
    Completion times: 41 60 73
    Lower bounds: 86 89 90
    --- Fathomed by bound ---
    Subproblem number 32: J= 2 3 1 5
    Completion times: 51 63 80
    Lower bounds: 89 95 93
    --- Fathomed by bound ---
    --- Subproblem 30: Fathomed by enumeration ---
Subproblem number 33: J= 2 3 4
Completion times: 35 55 68
Lower bounds: 64 74 91
--- Fathomed by bound ---
Subproblem number 34: J= 2 3 5
Completion times: 45 57 74
Lower bounds: 64 83 93
--- Fathomed by bound ---
--- Subproblem 29: Fathomed by enumeration ---
```

```
Subproblem number 35: J= 2 4
Completion times: 22 42 55
Lower bounds: 64 68 90
--- Fathomed by bound ---
Subproblem number 36: J= 2 5
Completion times: 32 44 61
Lower bounds: 64 77 92
--- Fathomed by bound ---
--- Subproblem 22: Fathomed by enumeration ---
Subproblem number 37: J= 3
Completion times: 13 20 32
Lower bounds: 64 65 84
Subproblem number 38: J= 3 1
Completion times: 19 21 38
Lower bounds: 80 72 84
Subproblem number 39: J= 3 1 2
Completion times: 35 42 58
Lower bounds: 86 86 88
```

```
Subproblem number 40: J= 3 1 2 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---
Subproblem number 41: J= 3 1 2 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 39: Fathomed by enumeration ---
Subproblem number 42: J= 3 1 4
Completion times: 25 44 57
Lower bounds: 80 79 90
--- Fathomed by bound ---
Subproblem number 43: J= 3 1 5
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound ---
--- Subproblem 38: Fathomed by enumeration ---
```

```
Subproblem number 44: J= 3 2
Completion times: 29 36 52
Lower bounds: 64 74 88
Subproblem number 45: J= 3 2 1
Completion times: 35 37 58
Lower bounds: 86 81 88
Subproblem number 46: J= 3 2 1 4
Completion times: 41 60 73
Lower bounds: 86 89 90
--- Fathomed by bound ---
Subproblem number 47: J= 3 2 1 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 45: Fathomed by enumeration -
Subproblem number 48: J= 3 2 4
Completion times: 35 55 68
Lower bounds: 64 74 91
--- Fathomed by bound ---
```

```
Subproblem number 49: J= 3 2 5
Completion times: 45 57 74
Lower bounds: 64 83 93
--- Fathomed by bound ---
--- Subproblem 44: Fathomed by enumeration ---

Subproblem number 50: J= 3 4
Completion times: 19 39 52
Lower bounds: 64 65 91
--- Fathomed by bound ---

Subproblem number 51: J= 3 5
Completion times: 29 41 58
Lower bounds: 64 74 93
--- Fathomed by bound ---
--- Subproblem 37: Fathomed by enumeration ---

Subproblem number 52: J= 4
Completion times: 6 25 38
Lower bounds: 64 58 89
--- Fathomed by bound ---

Subproblem number 53: J= 5
Completion times: 16 28 45
Lower bounds: 64 68 92
--- Fathomed by bound ---
--- Subproblem 0: Fathomed by enumeration ---

Optimal sequence is 1 4 2 3 5
# subproblems enumerated = 53
```