

2-Machine Flow Shop

We wish to sequence // jobs, each requiring processing on machine #1, followed by machine #2.

 p_{ij} = processing time for job i on machine #j

Objective: Sequence the jobs so as to minimize the makespan

IOR	Processing time (hrs)		
JOB	Machine #1	Machine #2	
1	2	6	
2	7	3	
3	9	7	
4	11	5	
5	7	10	
6	4	8	

Suppose we schedule the jobs for the sequence {1,2,3,4,5,6}

Can we reduce the makespan by changing the sequence of the jobs?

sequence {1,2,3,4,5,6}

Job	Machine 1	Machine 2
1_	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>
1 2 3 4 5 6	0 2 2 9 9 18 18 29 29 36 36 40	2 8 9 12 18 25 29 34 36 46 46 54

s = start time, f = finish time Makespan = 54

Johnson's Algorithm -an optimizing algorithm for scheduling the 2-machine flow shop, assuming that *no passing*

is allowed (i.e., jobs are processed in the same sequence on both machines)

-construsts a sequence by "growing" it from both ends (front and back)

step 0

Initialize $S_0 = S_1 = \emptyset$ and $I = \{1, 2, 3, ..., n\}$

step 1

Find $\min_{i \in I, i \in \{1,2\}} \{ \mathbf{p}_{ij} \} = \mathbf{p}_{\hat{i}\hat{j}}$

step 2

If \hat{j} =1, then $S_0 = S_0, \hat{i}$ (i.e., append job \hat{i} to the beginning of the sequence) Otherwise (i.e., \hat{j} =2), $S_1 = \hat{i}$, S_1 (i.e., append job \hat{i} to the end of the sequence)

Step 3

Remove \hat{i} from I. If $I \neq \emptyset$ then go to step 1.

Else the optimal sequence is $S = S_0, S_1$

EXAMPLE

 $S_0 = S_1 = \emptyset$ and $I = \{1,2,3,4,5,6\}$

Minimum p_{ij} is p_{11} Therefore, $S_0 = \{1\}, S_1 = \emptyset$ $I = \{2.3.4.5.6\}$

JOB	Processing time Machine 1 Machine 2		
1	2	6	
2 3	7	3	
3	9	7	
4	11	5	
5	7	10	
6	4	8	

			П.
1			

Minimum		p _{ij}
	p ₂₂	-

Therefore, S_o={1}, S₁ = {2} I={3,4,5,6}

JOB	Processing time		
JOD	Machine 1	Machine 2	
2	7	3	
3	9	7	
4	11	5	
5	7	10	
6	4	8	

Minimum p_{ij} is p₆₁ Therefore, S₀={1,6}

 $S_1 = \{2\}$

and

 $I={3,4,5}$

JOB	Processing time Machine 1 Machine 2		
3	9	7	
4	11	5	
5	7	10	
6	4	8	

1 6	2
-----	---

Minimum p_{ij} is p_{42} Therefore, $S_0 = \{1,6\}$ $S_1 = \{4,2\}$ and

LOD	Processing time				
JOB	Machine 1	Machine 1 Machine 2			
3	9	7			
4	11	(5)			
5	7	10			

 $I = \{3,5\}$

 $\begin{array}{ll} \text{Minimum } p_{ij} \\ \text{is } p_{51} = p_{32} \end{array}$

Therefore, $S_0 = \{1,6,5\}$ $S_1 = \{3,4,2\}$ and $I = \emptyset$ JOB Processing time
Machine 1 Machine 2

3 9 7
5 10

The optimal sequence is

Optimal Sequence = {1,6,5,3,4,2}

Job	Machine 1	Machine 2	
i_	s f	<u>s</u> <u>f</u>	
1 6 5 3 4 2	0 2 2 6 6 13 13 22 22 33 33 40	2 8 8 16 16 26 26 33 33 38 40 43	

s = start time, f = finish time Makespan = 43

Optimal Sequence = {1,6,5,3,4,2}

3-Machine Flow Shop Special conditions under which Johnson's Algorithm can be used to minimize the makespan:

- All jobs are to processed on Machines #1,2, &3 in that order
- The processing time on Machine #2 is dominated either by the time on Machine #1 or Machine #3.

either min
$$\{p_{i1}\}$$
 ≥ max $\{p_{i2}\}$
or min $\{p_{i3}\}$ ≥ max $\{p_{i2}\}$

LOD	Processing Times (hrs) Machine A Machine B Machine C				Processing Times (hrs)		
JOB							
1	10	6	7				
2	8	2	6				
3	5	2	10				
4	6	6	7				
5	8	5	8				

Processing times on machine 2 are dominated by those on machine 3

EXAMPLE

$$5 = min \{p_{i1}\} < max \{p_{i2}\} = 6$$

 $6 = min \{p_{i3}\} \ge max \{p_{i2}\} = 6$

Application of Johnson's Algorithm to 3-Machine Problem

Define two "dummy" machines, 1' and 2', with processing times

$$p_{i1'} = p_{i1} + p_{i2}$$

$$p_{i2'} = p_{i2} + p_{i3}$$

Apply Johnson's Algorithm to the two-machine problem with these two dummy machines. The resulting sequence is optimal for the 3-machine problem.

Original Data:

	MACHINE			
JOB	A B C			
1	10	6	7	
2	8	2	6	
3	5	2	10	
4	6	6	7	
5	8	5	8	

"Dummy" Machine Data:

	MACHINE	
JOB	1'	2'
1	16	13
2	10	8
3	7	12
4	12	13
5	13	13

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined:

Processing Times

The sequence found by this algorithm is: 3 4 5 1 2 The sequence is guaranteed to be optimal!

Optimal Schedule:

Job	Machine 1	Machine 2	Machine 3
i 3 4 5 1 2			<u>s</u> <u>f</u> 7 17 17 24 24 32 35 42 42 48

s = start time, f = finish time Makespan = 48

Optimal Sequence:

Compare with an arbitrary sequence:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

5 Jobs, 3 Machines

Processing Times

i	1	2	3
1	6	1	6
2	16	7	16
3	13	7	12
4	6	19	13
5	16	12	17

Times on machine 2 are NOT dominated by either machine 1 or 3!

Johnson's Algorithm

Three-Machine Problem

Two "dummy machines" are defined:

Processing Times

i	1	2
1	7	7
2	23	23
3	20	19
4	25	32
5	28	29

The sequence found by this algorithm is: 1 2 4 5 3

Not guaranteed to be optima!!

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Schedule found by Johnson's Algorithm:

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1	Machine 2	Machine 3
1	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>	<u>s</u> <u>f</u>
1	0 6	6 7	7 13
2	6 22	22 29	29 45
4	22 28	29 48	48 61
5	28 44	48 60	61 78
3	44 57	60 67	78 90

s = start time, f = finish time Makespan = 90 Branch-and-Bound Algorithm for 3-Machine Flowshop Problem -suggested by Ignall & Schrage Suppose that the first **r** jobs in the sequence have been tentatively fixed:

$$J_r = \{ j_1, j_2, \cdots j_r \}$$

Denote by $\overline{J_r}$ the set of (n-r) jobs not yet sequenced.

Let TIME1(J_r), TIME2(J_r), and TIME3(J_r) be the times at which machines 1, 2, & 3 (respectively) complete processing the jobs in J_r .

Lower Bounds on makespan of all completions of the partial sequence $\ensuremath{J_r}$:

$$\begin{aligned} TIME1(J_r) + \sum_{i \in \overline{J}_r} p_{i1} + \underset{i \in \overline{J}_r}{min} \{p_{i2} + p_{i3}\} \end{aligned}$$

Makespan if the job with shortest processing times on machines 2&3 need not wait

$$TIME2(J_r) + \sum_{i \in \overline{J}_r} p_{i2} + \underset{i \in \overline{J}_r}{min} \{p_{i3}\}$$

Makespan if the job with least time on machine #3 need not wait

$$TIME3(J_r) + \sum_{i \in \overline{J}_r} p_{i3}$$

Makespan if no job needs to wait for machine #3

Suppose $J_1 = \{1\}$

JOB	Machine	Process	sing Time
i	1	2	3
1	14	12	13
2	8	5	3
3	1	20	2
4	6	1	1

1	1			
2		1		
3			1	
	1		?6	39

$$TIME1(J_1) = 14$$

$$TIME2(J_1) = 26$$

$$TIME3(J_1) = 39$$

$$J_1 = \{1\}$$

TIME3(J_1) = 39

 $TIME3(J_r) + \sum_{i \in \overline{J}_r} \ p_{i3}$

JOB	Machine	Process	sing Time
i	1	2	3
1	14	12	13
2	8	5	3)
3	1	20	2 }6
4	6	1	1

Lower Bound #3:

$J_1 = \{1\}$	
ΓΙΜΕ2(J ₁) =	26

$TIME2(J_r)$

$$+ \sum_{i \in \overline{J}_r} p_{i2} + \min_{i \in \overline{J}_r} \{p_{i3}\}$$

	720777		
JOB	Machine	Process	sing Time
į	1	2	3
1	14	12	13
2	8	5	3)
3	1	20	2 }6
4	6	1	1]
	l		

$$J_1 = \{1\}$$

TIME 1(J_1) = 14

$$\begin{split} TIME1(J_r) + \sum_{i \in \overline{J}_r} p_{i1} \\ + \min_{i \in \overline{J}_r} \{p_{i2} + p_{i3}\} \end{split}$$

JOB	Machine	Process	sing Time
į	1	2	3
1	14	12	13
2	8	5	3)
3	1	20	2 }6
4	6	1	1 J

Lower Bound #1:

$$14 + 15 + (1+1) = 31$$

Branch-and-Bound Algorithm for 3-Machine Flowshop Problem

Branching will be done by choosing the next job to be added to the end of sequence $J_r\colon$

$$J_{r+1} = J_r \cup \{i_{r+1}\}$$

Branch-and-Bound 5-job, 3-machine Sequencing Problem

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Using Johnson's algorithm, job sequence is: 1 2 4 5 3 Makespan is 90, our original incumbent.

We now begin the branch-&-bound algorithm

*** New incumbent: 89 ***

Optimal sequence is 1 4 2 3 5 CPU time = 31.8 sec. # subproblems enumerated = 53 ←

-compared to 5! = 120 total sequences (44.2%)

Optimal Schedule

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Job	Machine 1	Machine 2	Machine 3
i	s f	s f	<u>s</u> <u>f</u>
1	0 6	6 7	7 13
4	6 12	12 31	31 44
2	12 28	31 38	44 60
3	28 41	41 48	60 72
5	41 57	57 69	72 89

s = start time, f = finish time Makespan = 89

Optimal Schedule:

Branch-and-Bound 5-job, 3-machine Sequencing Problem

Random Job Sequencing Problem (M=5, N=3, seed = 662020)

Using Johnson's algorithm, job sequence is: 1 2 4 5 3 Makespan is 90, our original incumbent.

We now begin the branch-&-bound algorithm

Subproblem number 0: J=

Subproblem number 1: J= 1 Completion times: 6 7 13 Lower bounds: 76 64 71

> Subproblem number 2: J= 1 2 Completion times: 22 29 45 Lower bounds: 76 79 87

Subproblem number 3: J= 1 2 3 Completion times: 35 42 57 Lower bounds: 86 86 87

> Subproblem number 4: J= 1 2 3 4 Completion times: 41 61 74 Lower bounds: 86 90 91 --- Fathomed by bound ---

Subproblem number 5: J= 1 2 3 5 Completion times: 51 63 80 Lower bounds: 89 95 93 --- Fathomed by bound ---

--- Subproblem 3: Fathomed by enumeration --

Subproblem number 6: J= 1 2 4 Completion times: 28 48 61 Lower bounds: 76 79 90 --- Fathomed by bound ---

Subproblem number 7: J= 1 2 5
Completion times: 38 50 67
Lower bounds: 76 88 92
--- Fathomed by bound ----- Subproblem 2: Fathomed by enumeration --Subproblem number 8: J= 1 3
Completion times: 19 26 38
Lower bounds: 80 77 84

Subproblem number 9: J= 1 3 2
Completion times: 35 42 58
Lower bounds: 86 86 88

Subproblem number 10: J= 1 3 2 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound --Subproblem number 11: J= 1 3 2 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ----- Subproblem 9: Fathomed by enumeration ---

Subproblem number 12: J= 1 3 4 Completion times: 25 45 58 Lower bounds: 80 80 91 --- Fathomed by bound ---

Subproblem number 13: J= 1 3 5
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound --Subproblem 8: Fathomed by enumeration ---

Subproblem number 14: J= 1 4 Completion times: 12 31 44 Lower bounds: 76 69 89

> Subproblem number 15: J= 1 4 2 Completion times: 28 38 60 Lower bounds: 76 69 89

> > Subproblem number 16: J= 1 4 2 3 Completion times: 41 48 72 Lower bounds: 86 77 89

Subproblem number 17: J= 1 4 2 3 5

New incumbent: 89 *

*** New incumbent: 89 ***

*** New incumbent: 89 ***

*** New incumbent: 89 ***

Subproblem number 18: J= 1 4 2 5 Completion times: 44 56 77 Lower bounds: 76 75 89 --- Fathomed by bound ------ Subproblem 15: Fathomed by enumeration ---

Subproblem number 19: J= 1 4 3 Completion times: 25 38 56 Lower bounds: 80 73 89 --- Fathomed by bound ---

Subproblem number 20: J= 1 4 5
Completion times: 28 43 61
Lower bounds: 76 69 89
--- Fathomed by bound --Subproblem 14: Fathomed by enumeration ---

Subproblem number 21: J= 1 5
Completion times: 22 34 51
Lower bounds: 76 79 92
--- Fathomed by bound ----- Subproblem 1: Fathomed by enumeration ---

Subproblem number 22: J= 2 Completion times: 16 23 39 Lower bounds: 64 68 87

> Subproblem number 23: J= 2 1 Completion times: 22 24 45 Lower bounds: 76 74 87

> > Subproblem number 24: J= 2 1 3 Completion times: 35 42 57 Lower bounds: 86 86 87

> > > Subproblem number 25: J= 2 1 3 4 Completion times: 41 61 74 Lower bounds: 86 90 91 --- Fathomed by bound ---

Subproblem number 26: J= 2 1 3 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ----- Subproblem 24: Fathomed by enumeration --

Subproblem number 27: J= 2 1 4 Completion times: 28 47 60 Lower bounds: 76 78 89 --- Fathomed by bound ---

Subproblem number 28: J= 2 1 5 Completion times: 38 50 67 Lower bounds: 76 88 92 --- Fathomed by bound ---

--- Subproblem 23: Fathomed by enumeration ---

Subproblem number 29: J= 2 3 Completion times: 29 36 51 Lower bounds: 64 74 87

```
Subproblem number 30: J= 2 3 1
 Completion times: 35 37 57
 Lower bounds: 86 81 87
      Subproblem number 31: J= 2 3 1 4
      Completion times: 41 60 73
      Lower bounds: 86 89 90
      --- Fathomed by bound ---
      Subproblem number 32: J= 2 3 1 5 Completion times: 51 63 80
      Lower bounds: 89 95 93
      --- Fathomed by bound ---
     Subproblem 30: Fathomed by enumeration -__
Subproblem number 33: J= 2 3 4 Completion times: 35 55 68
Lower bounds: 64 74 91
 --- Fathomed by bound ---
 Subproblem number 34: J= 2 3 5
 Completion times: 45 57 74
 Lower bounds: 64 83 93
 --- Fathomed by bound ---
Subproblem 29: Fathomed by enumeration ---
```

Subproblem number 35: J= 2 4
Completion times: 22 42 55
Lower bounds: 64 68 90
--- Fathomed by bound --
Subproblem number 36: J= 2 5
Completion times: 32 44 61
Lower bounds: 64 77 92
--- Fathomed by bound ----- Subproblem 22: Fathomed by enumeration --
Subproblem number 37: J= 3
Completion times: 13 20 32
Lower bounds: 64 65 84

Subproblem number 38: J= 3 1
Completion times: 19 21 38
Lower bounds: 80 72 84

Subproblem number 39: J= 3 1 2
Completion times: 35 42 58

Lower bounds: 86 86 88

```
Subproblem number 40: J= 3 1 2 4
Completion times: 41 61 74
Lower bounds: 86 90 91
--- Fathomed by bound ---
Subproblem number 41: J= 3 1 2 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ---
--- Subproblem 39: Fathomed by enumeration --
Subproblem number 42: J= 3 1 4
Completion times: 25 44 57
Lower bounds: 80 79 90
--- Fathomed by bound ---
Subproblem number 43: J= 3 1 5
Completion times: 35 47 64
Lower bounds: 80 86 93
--- Fathomed by bound ---
Subproblem 38: Fathomed by enumeration ---
```

Subproblem number 44: J= 3 2
Completion times: 29 36 52
Lower bounds: 64 74 88

Subproblem number 45: J= 3 2 1
Completion times: 35 37 58
Lower bounds: 86 81 88

Subproblem number 46: J= 3 2 1 4
Completion times: 41 60 73
Lower bounds: 86 89 90
--- Fathomed by bound --
Subproblem number 47: J= 3 2 1 5
Completion times: 51 63 80
Lower bounds: 89 95 93
--- Fathomed by bound ----- Subproblem 45: Fathomed by enumeration Subproblem number 48: J= 3 2 4
Completion times: 35 55 68
Lower bounds: 64 74 91

--- Fathomed by bound ---

Subproblem number 49: J= 3 2 5 Completion times: 45 57 74 Lower bounds: 64 83 93 --- Fathomed by bound ------ Subproblem 44: Fathomed by enumeration ---

Subproblem number 50: J= 3 4 Completion times: 19 39 52 Lower bounds: 64 65 91 --- Fathomed by bound ---

Subproblem number 51: J= 3 5
Completion times: 29 41 58
Lower bounds: 64 74 93
--- Fathomed by bound --Subproblem 37: Fathomed by enumeration ---

Subproblem number 52: J= 4 Completion times: 6 25 38 Lower bounds: 64 58 89 --- Fathomed by bound ---

Subproblem number 53: J= 5
Completion times: 16 28 45
Lower bounds: 64 68 92
--- Fathomed by bound ----- Subproblem 0: Fathomed by enumeration --Optimal sequence is 1 4 2 3 5

subproblems enumerated = 53