

Suppose that a new car costs \$10,000, and that the annual operating cost & resale value are as follows:

Age of car (yrs)	Resale Value	Operating cost in previous year
1	\$7000	\$300
2	\$6000	\$500
3	\$4000	\$800
4	\$3000	\$1200
5	\$2000	\$1600
6	\$1000	\$2200

Starting with a new car, what is the replacement policy that minimizes the net cost of owning and operating a car for the next six years?

(Assuming that

- ●initial car has already been paid for
- •no car is needed at the end of the sixth year)

Optimal Machine Replacement Problem Purchase price of new machine = 10000

Age	Maintenance cost prev.yr	Salvage value
1	300	7000
2	500	6000
3	800	4000
4	1200	3000
5	1600	2000
6	2200	1000

Machine Replacement 10/31/97 page 3

G(t) = minimum total cost incurred from time t until the end of the planning horizon, if a new machine has just been purchased.

X*(t) = optimal replacement time
 for a machine which has
 been purchased at the
 beginning of period t.

©Dennis Bricker, U. of Iowa, 1997

$$G(t) = \underset{t+1 \leq x \leq T}{\mathbf{minimum}} \left\{ \sum_{i=1}^{x-t} C_i - S_{x-t} + P_x + G(x) \right\}$$

where

 P_t = purchase price of a new machine at time t $(P_T = 0)$

C_i = cost of operation & maintenance of a machine in its ith year

 S_j = salvage value of machine of age j

$$G(t) = \underset{t+1 \leq x \leq T}{minimum} \left\langle \sum_{i=1}^{x-t} |\mathbf{C}_i - \mathbf{S}_{x-t} + |\mathbf{P}_x + G(x) \right\rangle$$

Starting point:

New car at the beginning of the first year What's the least-cost way to get from node 0 to node 6?

Termination: No car at the end of the sixth year

G[6] = 0

Computation of G[5] = Minimum total cost until end of time period 6, given a new machine at time 5

X*[5]=6 = optimal replacement time G[5]=-6700

$$G(4) = minimum \{300 + 10000 - 7000 + G(5), 300 + 500 - 6000 + G(6)\}$$

= $minimum \{-3400, -5200\} = -5200$

Stage 4

Computation of G[4] = Minimum total cost until end of time period 6, given a new machine at time 4

X*[4]=6 = optimal replacement time G[4]=-5200

$$G(3)$$
= minimum{ $300+10000-7000+G(4)$,
 $300+500+10000-6000+G(5)$,
 $300+500+800-4000+G(6)$ }

 $= minimum\{-1900, -1900, -2400\} = -2400$

©Dennis Bricker, U. of Iowa, 1997

Stage 3

Computation of G[3] = Minimum total cost until end of time period 6, given a new machine at time 3

X*[3]=6 = optimal replacement time G[3]=-2400

$$G(2)$$
= minimum{3300+ $G(3)$, 4800+ $G(4)$,
7600+ $G(5)$, -200+ $G(6)$ }
= minimum{ 900, -400, 900, -200} = -400

Stage 2

Computation of G[2] = Minimum total cost until end of time period 6, given a new machine at time 2

X*[2]=4 = optimal replacement time G[2]=-400

Stage 1

Computation of G[1] = Minimum total cost until end of time period 6, given a new machine at time 1

<u> </u>	C	_C+G	
234 56	3300 4800 7600 9800 2400	2900 2400 2400 3100 2400	T

X*[1]=3 = optimal replacement time G[1]=2400

Actually, one could replace at x=3, 4, or 6!

©Dennis Bricker, U. of Iowa, 1997

Stage O

Computation of G[0] = Minimum total cost until end of time period 6, given a new machine at time 0

X	C	C+G	
1	3300	5700	1
2	4800	4400 €	
3	7600	5200	
4	9800	4600	
5	12400	5700	
6	5600	5600	

X*[0]=2 = optimal replacement time G[0]=4400

Summary

t	х	G
0 1 2 3 4 5 6	2346660	4400.00 2400.00 -400.00 -2400.00 -5200.00 -6700.00 0.00

Your expected total cost for 6 time periods will be 4400.00

The optimal plan is to replace the initial car after two years, i.e., X*(0)=2.

Then, since X*(2)=4, you should replace at the end of the fourth year.

©Dennis Bricker, U. of Iowa, 1997

Starting point:

New car at the beginning of the first year

Optimal replacement plan

Termination: *No car at the end* of the sixth year

