

Machine Replacement Problem via DP

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

Suppose that a new car costs \$10,000, and that the annual operating cost & resale value are as follows:

Age of car (yrs)	Resale Value	Operating cost in previous year
1	\$7000	\$300
2	\$6000	\$500
3	\$4000	\$800
4	\$3000	\$1200
5	\$2000	\$1600
6	\$1000	\$2200

Starting with a new car, what is the replacement policy that minimizes the net cost of owning and operating a car for the next six years?

(Assuming that

- initial car has already been paid for
- no car is needed at the end of the sixth year)

Optimal Machine
Replacement
Problem

Purchase price of
new machine = 10000

Age	Maintenance cost prev. yr	Salvage value
1	300	7000
2	500	6000
3	800	4000
4	1200	3000
5	1600	2000
6	2200	1000

$G(t)$ = minimum total cost incurred from time t until the end of the planning horizon, if a new machine has just been purchased.

$X^*(t)$ = optimal replacement time for a machine which has been purchased at the beginning of period t .

©Dennis Bricker, U. of Iowa, 1997

$$G(t) = \underset{t+1 \leq x \leq T}{\text{minimum}} \left\{ \sum_{i=1}^{x-t} C_i - S_{x-t} + P_x + G(x) \right\}$$

where

P_t = purchase price of a new machine at time t ($P_T = 0$)

C_i = cost of operation & maintenance of a machine in its i^{th} year

S_j = salvage value of machine of age j

©Dennis Bricker, U. of Iowa, 1997

$$G(t) = \underset{t+1 \leq x \leq T}{\text{minimum}} \left\{ \sum_{i=1}^{x-t} C_i - S_{x-t} + P_x + G(x) \right\}$$

©Dennis Bricker, U. of Iowa, 1997

Starting
point:

*New car at the
beginning of the
first year*

0

1

2

3

4

5

6

*What's the least-cost way to
get from node 0 to node 6?*

Termination:
*No car at the end
of the sixth year*

©Dennis Bricker, U. of Iowa, 1997

$$G(5) = 300 - 7000$$

$$= -6700$$

$$G(6) = 0$$

©Dennis Bricker, U. of Iowa, 1997

$$G[6] = 0$$

Computation of $G[5]$ = Minimum total cost until end of time period 6, given a new machine at time 5

$$\frac{x}{6} \frac{C}{-6700} \frac{C+G}{-6700}$$

$x^*[5] = 6$ = optimal replacement time
 $G[5] = -6700$

©Dennis Bricker, U. of Iowa, 1997

$$\begin{aligned}
 G(4) &= \min \{ 300 + 10000 - 7000 + G(5), \\
 &\quad 300 + 500 - 6000 + G(6) \} \\
 &= \min \{ -3400, -5200 \} = -5200
 \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1997

Computation of $G[4]$ = Minimum total cost until end of time period 6, given a new machine at time 4

<u>X</u>	<u>C</u>	<u>C+G</u>
5	3300	-3400
6	-5200	-5200

$X^*[4] = 6$ = optimal replacement time
 $G[4] = -5200$

©Dennis Bricker, U. of Iowa, 1997

$$\begin{aligned}
 G(3) &= \min\{300+10000-7000+G(4), \\
 &\quad 300+500+10000-6000+G(5), \\
 &\quad 300+500+800-4000+G(6)\} \\
 &= \min\{-1900, -1900, -2400\} = -2400
 \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1997

Stage
3

Computation of $G[3]$ = Minimum total cost until end of time period 6, given a new machine at time 3

X	C	C+G
4	3300	-1900
5	4800	-1900
6	-2400	-2400

$X^*[3] = 6$ = optimal replacement time
 $G[3] = -2400$

©Dennis Bricker, U. of Iowa, 1997

$$\begin{aligned}
 G(2) &= \min\{3300+G(3), 4800+G(4), \\
 &\quad 7600+G(5), -200+G(6)\} \\
 &= \min\{900, -400, 900, -200\} = -400
 \end{aligned}$$

©Dennis Bricker, U. of Iowa, 1997

Stage
2

Computation of $G[2]$ = Minimum total cost until end of time period 6, given a new machine at time 2

x	C	C+G
3	3300	900
4	4800	-400
5	7600	900
6	-200	-200

$x^*[2] = 4$ = optimal replacement time
 $G[2] = -400$

©Dennis Bricker, U. of Iowa, 1997

Computation of $G[1]$ = Minimum total cost until end of time period 6, given a new machine at time 1

<u>x</u>	<u>C</u>	<u>C+G</u>
2	3300	2900
3	4800	2400
4	7600	2400
5	9800	3100
6	2400	2400

$X^*[1] = 3$ = optimal replacement time
 $G[1] = 2400$

*Actually, one could
 replace at $x=3, 4$, or 6!*

©Dennis Bricker, U. of Iowa, 1997

Computation of $G[0]$ = Minimum total cost until end of time period 6, given a new machine at time 0

<u>x</u>	<u>C</u>	<u>C+G</u>
1	3300	5700
2	4800	4400
3	7600	5200
4	9800	4600
5	12400	5700
6	5600	5600

$X^*[0] = 2$ = optimal replacement time
 $G[0] = 4400$

©Dennis Bricker, U. of Iowa, 1997

Summary

t	x	G
0	2	4400.00
1	3	2400.00
2	4	-400.00
3	6	-2400.00
4	6	-5200.00
5	6	-6700.00
6	0	0.00

Your expected total cost for 6 time periods will be 4400.00

The optimal plan is to replace the initial car after two years, i.e., $X^*(0)=2$.

Then, since $X^*(2)=4$, you should replace at the end of the fourth year.

©Dennis Bricker, U. of Iowa, 1997

Starting point:

New car at the beginning of the first year

Optimal replacement plan

Termination:
No car at the end
of the sixth year

©Dennis Bricker, U. of Iowa, 1997