

Application

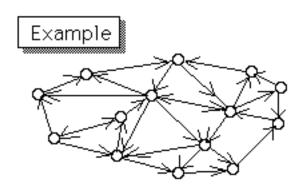
A set of products is to be scheduled on a machine.

(Example: scheduling steel to be rolled (producing varying grades, widths, thicknesses, etc.) in a hot strip mill.)

For some pairs (i,j) of products, no major setup is required if product j immediately follows product i.

We wish to sequence the products so as to minimize the number of major setups required.

Represent the products by nodes in a network, with arc from node i to node j if node j requires no major setup when if follows node i.



The nodes on a path through the network correspond to a sequence of products which can be produced with a single major setup.

Any two such paths should be *disjoint*, i.e., should share no common products.

@D.L.Bricker, U. of Iowa, 1998

The Disjoint Path Problem:

Find the minimum number of disjoint paths which span all the nodes of a directed graph.



Disjoint Path 8/26/98 page 3

PROBLEM STATEMENT:

Given a directed graph (digraph) G = (N,A)

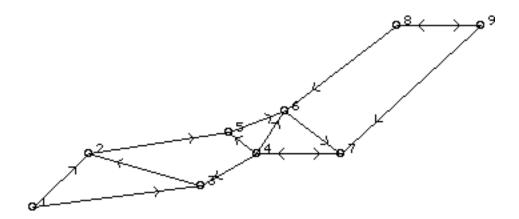
where $N = \{1, 2, ... n\} = \text{set of nodes}$

 $A = set of arcs (A \subseteq N \times N)$

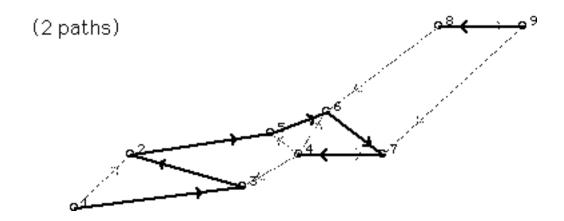
Find the minimum number of paths such that every node iEN lies on one (and only one) path

©D.L.Bricker, U. of Iowa, 1998

Example:



The optimal solution:



@D.L.Bricker, U. of Iowa, 1998

Mathematical Programming Model

Define the variables

$$X_{ij} = \begin{cases} 1 & \text{if arc (i,j) is included on a path} \\ 0 & \text{otherwise} \end{cases}$$

Clearly $X_{ij} = 1$ for at most one j for each i and $X_{ij} = 1$ for at most one i for each j

That is, at most one arc enters node j, and at most one arc leaves node i

Thus, we have the constraints

$$\sum_{j=1}^n \; X_{ij} \leq 1 \quad \text{for each i} \epsilon N$$

$$\sum_{i=1}^n \; X_{ij} \leq 1 \quad \text{for each j} \epsilon N$$

However, the above constraints permit circuits,

@D.L.Bricker, U. of Iowa, 1998

We must add the constraint that the edges of the subgraph indicated by X form a "forest", i.e., a collection of trees.

(A tree is a subgraph containing no cycle.)

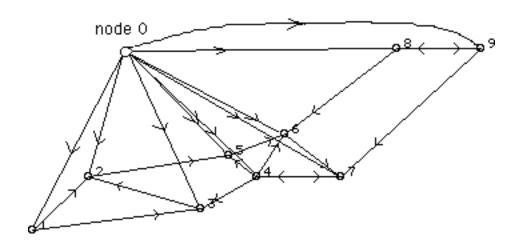
In order to facilitate defining the objective function (which is to be the number of paths) in terms of X,

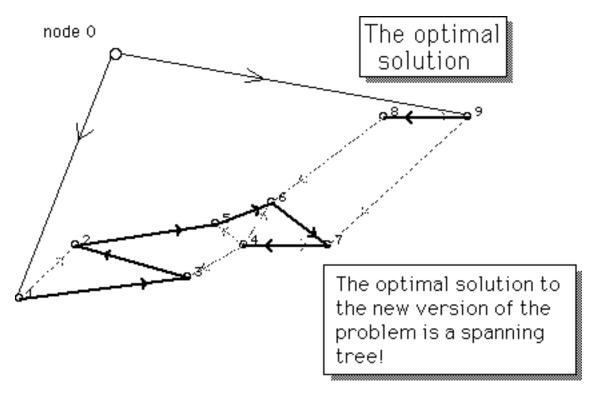
Define a new node 0

Let
$$G' = (N', A')$$
 where $N' = N \cup \{0\}$
 $A' = A \cup \{(0,1), (0,2), ... (0,n)\}$

Let
$$X_{oi} = \begin{cases} 1 & \text{if node i is the beginning of a path} \\ 0 & \text{otherwise} \end{cases}$$

@D.L.Bricker, U. of Iowa, 1998





@D.L.Bricker, U. of Iowa, 1998

The Optimization Problem:

$$\begin{array}{ll} \textbf{Minimize} & \sum\limits_{j=1}^{n} \ X_{0j} \\ \textbf{subject to} \end{array}$$

$$X \in \mathcal{T} = \text{set of all spanning trees of } G'$$

$$\begin{array}{ll} \sum\limits_{j=1}^{n} \ X_{ij} \leq 1 & \text{for each } i\epsilon N & \textit{Note that no inequality} \\ \sum\limits_{j=1}^{n} \ X_{ij} \leq 1 & \text{for each } j\epsilon N \\ \sum\limits_{i=0}^{n} \ X_{ij} = 1 & \text{for each } j\epsilon N \\ X_{ij} \ \epsilon \ \left\{0,1\right\} & \text{for each } (i,j) \ \epsilon \ A' \end{array}$$

Minimize
$$\sum_{j=1}^{n} X_{0j}$$

subject to

$$X \in T = \text{set of all spanning trees of } G'$$

$$\begin{array}{c} \sum\limits_{j=1}^{n} \; X_{ij} \leq 1 \quad \text{for each } i \epsilon N \\ \sum\limits_{j=0}^{n} \; X_{ij} = 1 \quad \text{for each } j \epsilon N \\ X_{ij} \; \epsilon \; \left\{0,1\right\} \quad \text{for each } (i,j) \; \epsilon \; A' \end{array}$$

@D.L.Bricker, U. of Iowa, 1998

This problem appears to be a good candidate for Lagrangian Relaxation because of its structure:

- If we relax the spanning tree constraint, we obtain a relaxation which is an assignment problem
- If we relax the assignment constraints, we obtain a relaxation which is a minimum spanning tree problem

However, because the spanning tree constraint is not easily written as a system of explicit linear constraints, relaxing them is problematic!

Disjoint Path 8/26/98 page 9

Variable "splitting"

For each variable X_{ij} of the problem, define a variable Y_{ij} Require that X be a spanning tree,
that Y be a feasible assignment,
and that $X_{ij} = Y_{ij}$ for each i & j

@D.L.Bricker, U. of Iowa, 1998

$$\begin{aligned} & \text{Minimize} \;\; \alpha \; \sum_{j=1}^n \; X_{0j} \; + (1-\alpha) \; \sum_{j=1}^n Y_{0j} \\ & \text{subject to} \\ & \;\;\; X \; \epsilon \; \; \mathcal{T} \end{aligned} \qquad \qquad \begin{aligned} & \sum_{j=1}^n \; Y_{ij} \leq 1 \quad \text{for each } i \epsilon N \\ & \;\;\; \sum_{j=1}^n \; Y_{ij} \leq 1 \quad \text{for each } j \epsilon N \\ & \;\;\; \sum_{i=0}^n \; Y_{ij} = 1 \quad \text{for each } (i,j) \epsilon \; A' \end{aligned}$$

$$& \;\;\; Y_{ij} \;\; \epsilon \;\; \left\{0,1\right\} \quad \text{for each } (i,j) \epsilon \; A' \end{aligned}$$

for some specified weight α which distributes the cost between the two sets of variables $(0 \le \alpha \le 1)$

Disjoint Path 8/26/98 page 10

$$\begin{aligned} & \text{Minimize} \quad \alpha \sum_{j=1}^{n} X_{0j} + (1-\alpha) \sum_{j=1}^{n} Y_{0j} \\ & \text{subject to} \\ & X \in \mathcal{T} \end{aligned} \qquad \begin{aligned} & \sum_{j=1}^{n} Y_{ij} \leq 1 \quad \text{for each i} \epsilon N \\ & \sum_{j=1}^{n} Y_{ij} = 1 \quad \text{for each j} \epsilon N \\ & Y_{ij} \in \left\{0,1\right\} \quad \text{for each } (i,j) \epsilon A \end{aligned}$$

$$& X_{ij} = Y_{ij} \quad \text{for each } (i,j) \epsilon A \end{aligned}$$

@D.L.Bricker, U. of Iowa, 1998

The Lagrangian Relaxation:

$$\begin{split} \text{Minimize} & \; \alpha \; \sum_{j=1}^n \; X_{0j} \; + (1-\alpha) \; \sum_{j=1}^n Y_{0j} \; \; + \sum_{i=0}^n \; \sum_{j=1}^n \; \lambda_{ij} \left(X_{ij} - Y_{ij} \right) \\ \text{subject to} & \; \sum_{j=1}^n \; Y_{ij} \leq 1 \quad \text{for each } i \epsilon N \\ & \; X \; \epsilon \; \; \mathcal{T} \\ & \; \sum_{j=0}^n \; Y_{ij} = 1 \quad \text{for each } j \epsilon N \\ & \; Y_{ij} \; \epsilon \; \left\{ 0, 1 \right\} \quad \text{for each } (i, j) \; \epsilon \; A' \end{split}$$

The Lagrangian Relaxation:

$$\begin{aligned} \text{Minimize} & \ \sum_{j=1}^{n} (\alpha + \lambda_{0j}) X_{0j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} X_{ij} \\ & + \ \sum_{j=1}^{n} (1 - \alpha - \lambda_{0j}) Y_{0j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} Y_{ij} \\ & \text{subject to} \\ & X \in \mathcal{T} \end{aligned} \qquad \qquad \begin{aligned} \sum_{j=1}^{n} \ Y_{ij} \leq 1 & \text{for each } i \epsilon N \\ & \sum_{i=0}^{n} \ Y_{ij} = 1 & \text{for each } j \epsilon N \end{aligned}$$

$$Y_{ij} \in \left\{0,1\right\} \quad \text{for each } (i,j) \in A^{i}$$

⊚D.L.Bricker, U. of Iowa, 1998

The Lagrangian Relaxation separates into two subproblems:

Minimum Spanning Tree Problem:

$$\Phi_{X}(\lambda) = \mathbf{minimum} \quad \sum_{j=1}^{n} (\alpha + \lambda_{0j}) X_{0j} + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{ij} X_{ij}$$
subject to
$$X \in \mathcal{T}$$

Assignment Problem

$$\begin{split} \Phi_Y(\lambda) &= minimum \sum_{j=1}^n (1-\alpha-\lambda_{0j}) Y_{0j} - \sum_{i=1}^n \sum_{j=1}^n \lambda_{ij} \ Y_{ij} \\ &= subject \ to \\ &\qquad \sum_{j=1}^n \ Y_{ij} \leq 1 \quad for \ each \ i \epsilon N \\ &\qquad \sum_{i=0}^n \ Y_{ij} = 1 \quad for \ each \ j \epsilon N \\ &\qquad Y_{ij} \quad \epsilon \quad \left\{0,1\right\} \quad for \ each \ (i,j) \ \epsilon \ A' \end{split}$$

⊚D.L.Bricker, U. of Iowa, 1998

For any matrix λ of Lagrangian multipliers, the sum of the optimal values of the two subproblems provides a lower bound on the optimal value of the original problem:

$$\Phi(\lambda) = \Phi_{x}(\lambda) + \Phi_{y}(\lambda) \leq Z^{*}$$

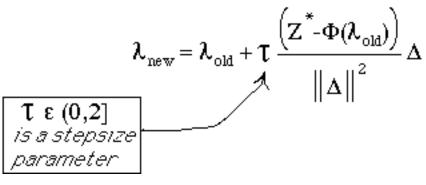
The Lagrangian Dual:

$$\Phi^* = \text{Maximum } \Phi^-(\lambda)$$

The search for the optimal dual variables (λ) can be performed by *subgradient optimization*

The subgradient of the dual objective, $\Phi(\lambda)$ is the matrix Δ ={ δ_{ij} } where δ_{ij} = (X_{ij} - Y_{ij})

This is the direction in which to change λ



It may be that the optimal values of X and Y for the subproblems are never feasible paths.

For this reason, it is worthwhile to seek a feasible solution (which provides an upper bound) by means of a heuristic.

Two heuristic algorithms have been designed:

- · a "greedy" algorithm
- a random-search algorithm

The "greedy" algorithm proceeds as follows:

Initially, the path set P is empty $(P \leftarrow \emptyset)$

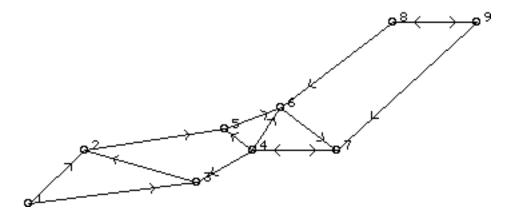
- (a) If all nodes lie on a path, stop. Else, begin a new path by selecting the node i^{*} which minimizes λ_{0i}.
 Let P← P∪ {(0,i*)}
- (b) If {(i,j): j does not lie on a path} is empty, go to step (a). Otherwise, let j*←argmin { λ_{ii} : j does not lie on a path}
- (c) Let $P \leftarrow P \cup \{(i*,j*)\}$ and $i* \leftarrow j*$. Return to step (b).

@D.L.Bricker, U. of Iowa, 1998

The random search algorithm finds several trial solutions, each constructed as in the greedy algorithm except:

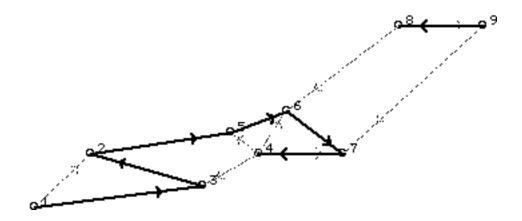
In step (b), the choice of the next node to add to the path is random, with probability depending upon the current value of the Lagrange multipliers (λ_{ij}) . (Probabilities vary inversely as the multipliers, so that the choice tends to be "greedy".)

Randomly-generated problem (N=9)

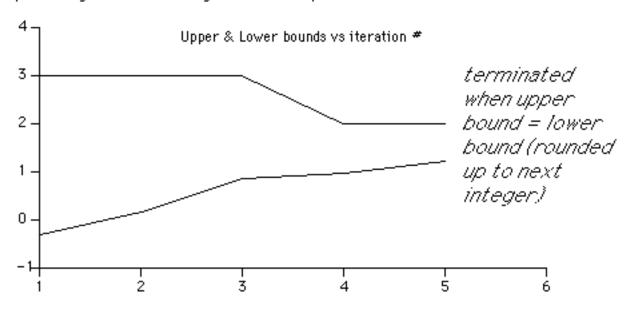


@D.L.Bricker, U. of Iowa, 1998

The optimal solution:



Results of Lagrangian dual search (Spanning tree & assignment subproblems)



@D.L.Bricker, U. of Iowa, 1998

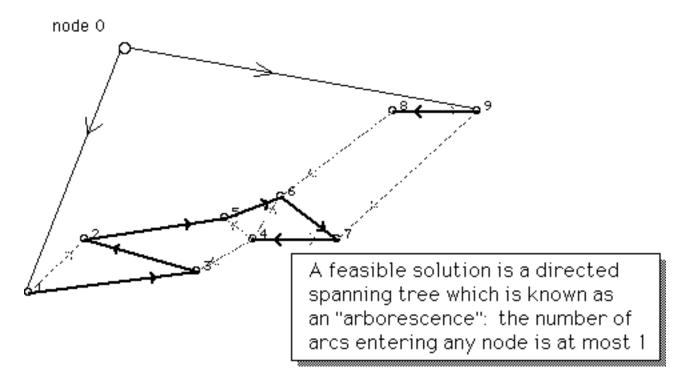
Other relaxations are possible:

#2

Relax, in addition to those relaxed in the approach just presented, the constraint on the in-degree of each node:

$$\sum_{i=0}^n \ Y_{ij} = 1 \quad \text{for each j} \epsilon N$$

The subproblem in Y is then a simple GUB (generalized upper bound, or "multiple choice") problem.



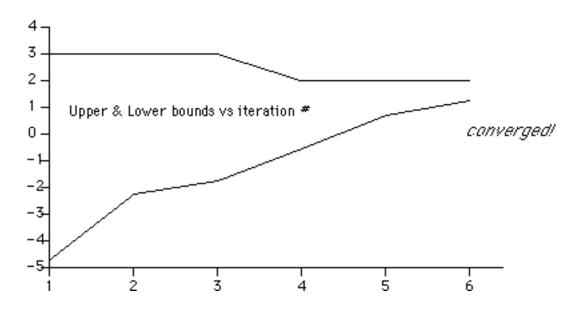
@D.L.Bricker, U. of Iowa, 1998

#3

Replace the constraint that X is a tree with the stronger constraint that X is an "arborescence" (a directed tree with indegrees of the nodes \(\) Then relax as in #2.

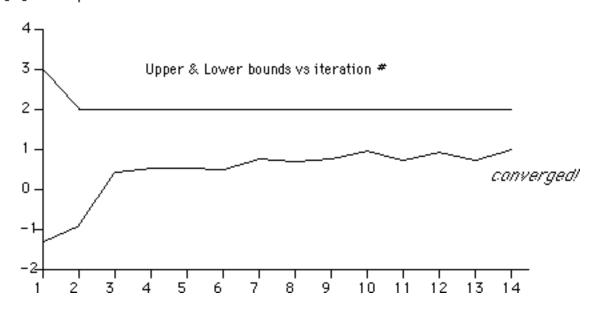
(The algorithm to compute a minimum spanning arborescence is O(n⁴). In practice, execution time for the APL code is about 15 times that for the spanning tree problem, for a 20-node problem.)

Using relaxation #2 (spanning tree & GUB problems)
(Using greedy heuristic)

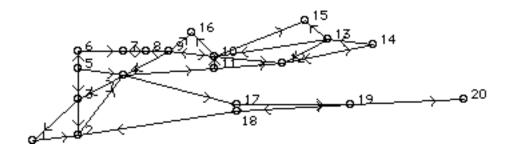


@D.L.Bricker, U. of Iowa, 1998

Using relaxation #3 (spanning arborescence & GUB) (Using greedy heuristic)



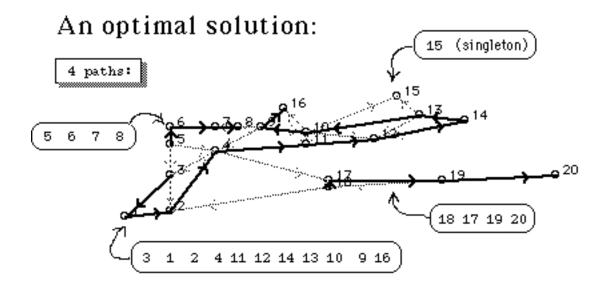
Another randomly-generated problem, with N=20



@D.L.Bricker, U. of Iowa, 1998

The Adjacency Matrix:

	₩	01	ო	귝	នេ	۵	[~	ω	σ	70	Ţ	77	ពុ	44	13	16	17	8	5	20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	001000000000000000000000000000000000000	101000000000000000	000110000000000000	0110100010000000	00000000000000000	00001000000000000	00000101000000000	00000010100000000	00000000010000000	00000000101010000	00010000000000000	00000000011011000	1 0000000000000010000	00000000000100000	00000000010010000	00000000110000000	000100000000000000000000000000000000000	00000000000000001	00000000000000001	00000000000000000
18 19 20	0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0 0 0	0 0 0	0 0 0	0	0	0	0	1 0 0	0 1 0	1 0 0	0 1 0

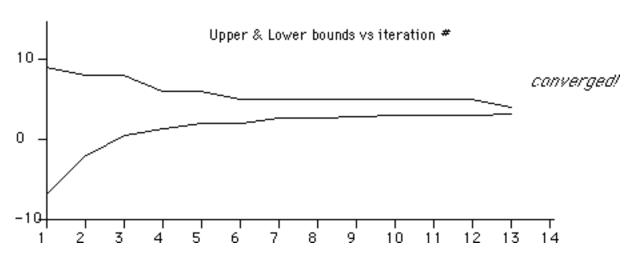


(The "dummy" node 0 & arcs from it are not shown.)

@D.L.Bricker, U. of Iowa, 1998

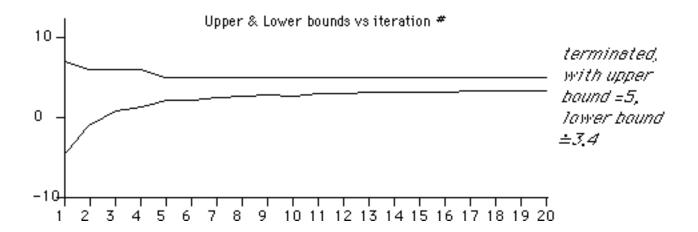
Relaxation #2 (spanning tree & GUB subproblems)

(Using random search heuristic with 5 trials.)



Relaxation #3 (spanning arborescence & GUB subproblems)

(Using random search heuristic with 5 trials.)



@D.L.Bricker, U. of Iowa, 1998

This limited computational experience suggests that the additional effort required to find the minimum spanning arborescence is not effective.