Complexity 9/29/97 page 1

COMPUTATIONAL

COMPLEXITY

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,

oo ooy University of lowa,
oo oo ooorooooo jowa City, lowa 52242
author |rOTooT oo mrorororo) e-mail: dbricker@icaen.uiowa.edu

How can we compare two different algorithms
for the same problem?

¢ QUALITY OF SOLUTION

¢ COMPUTATIONAL EFFICIENCY

Complexity 9/29/97 page 2

A measure often used to measure computational
efficiency is computer execution time (cpu time)

... but cpu time depends upon
type of computer
programming language
programmer skills
etc.

PRINCIPLE OF | I principle of invariance
INVARIANCE says that two different
implementations of the

same algorithm will not differ in computational
efficiency by more than a multiplicative constant

I[f two implemnentations of the same algorithrm, which may differ
in programming language & /or machine used, take ty(n) and
t2{n) seconds for an instance of size n, then there existz a ¢ 0
and integer N such that ty(n) = ¢ tz(n) for all n = N,

Complexity 9/29/97 page 3

One appropriate way to measure the computa-
tional efficiency is to count the number of
elementary operations that are required by
the algorithm, i.e., additions, subtractions,
multiplications, divisions, comparisons, eltc.

Speciticallyv, we compule the "worst-case”
number of efemeniary operalions, Wiich may
be guite girferent rrom lhe typical-case”
profifem encovntered in sclval applications.

A more "macro” view would count the number
of iterations that the algorithm must perform
as a function ti{n) of the size n of the problem
if the computational effort per iteration is
stable, e.g., bounded by some function of n.

Complexity 9/29/97 page 4

We say that an algorithm takes time &/ Z4e
ardger tin), where t is a given function, if
there exists a ¢ > O and an implementation of
the algorithm capable of solving ever) instance

of the problem of size n in a time bounded by
ctin).

This is denoted Olt(n)) and is called the
trme compfexi?y of the algorithm.

HIANNW Dvkstra's Shortest Path Algorithm

Denote: n = # nodes
k = current stage (¥permanent labels)
so (n-k) = # of temporary labels.
At stage k (1 < k < n),
3 operations are required for each
temporary label:
1 addition & 1 comparison for updating
1 comparison for selecting label to be
made permanent

Complexity 9/29/97 page 5

Total:

tin) = > 3(nk)=3> n-3> k

k=1 k=1 k=1

:3112—311}::%:3/2112

That is, the algorithm is O(n?)

Polynomial Time Algorithm

An algorithm for which the time (equivalently,
the number of operations)is O(p(n)), i.e.,
proportional to p(n), where p(n) is a polynomial
function and n is the "size”™ of the problem,

is called a po/vnomiz/ time algorithm

Complexity 9/29/97 page 6

An algorithm which is not “polynomial time”
is usually referred to as an exponeniial/ lime
algorithm.

Example: Balas’ implicit enumeration algorithm
In the worst-case scenario, no node of the
enumeration tree is fathomed, and all 2"
completions are exg/ic/i/y enumerated, so that
the algorithm is 0O(2M.

The importance of the distinction between
polynomial time & exponential time algorithms
1s evident in the following table, which gives
cpu times for various problem sizes

While the computational burden may not be
significantly different for "small” n, as n
increases the differences become dramatic!

Complexity 9/29/97 page 7

=ize of problem (n
Com — b in)

plexity 10 20 A0 40 il ol

Oln) || 000001 | 000002 (000003 (0.00004|0.00005%|0.00006
SE, SaC, SE, SE SE SE,

O(n<) | 00001 |00004 (00009 |00016 |00025 |00036

S, S, SEC, SEC. SEC. SEC,

O(n3) | 0.001 0.008 0027 0064 0125 0216
Se, SE, SE, Se, SEC, SE,

On2) | O01sec. |32 sec [243 1.7 min. |5.2 min. [13 min.

SEC.

O(Z™) || 0.001 1 sec. 179 min| 127 357 vr | 266
SEC, davs centuries

03" | 0059 |S58min [65 yr | 3855 |2z10 1.3210
SEC, centuries|centuries| centuries

Suppose computer can perform 10 operations/sec.

CLASSIFICATION
OF PROBLEMS

P = set of all problems which are solvable
by a polynomial time algorithm

NP = set of all problems which are solvable
by a "nondeterministic” polynomial time
algorithm

i.e., for which a "quess” can be evaluated in
polynomial time (practically all problems
of interest)

Complexity 9/29/97 page 8

For example, the shortest route problem is
a member of the set P.

Clearly,

That is, if a problem can be solved in polynomial
time, then it is certainly possible to evaluate
its objective function for a candidate solution

in polynomial time.

Is P =NP?

That is, does there exist a

problem for which no poly-
nomial time algorithm can

never be found?

FEE (the Lraveling saiesman
Lroisiennd s card gl i e

S FE LS FIs 10 onie REs

S Shie 1o Gesigns & o0d ol
FHTRE BIQOFIET FOF 1ES SO TONn
LOFESELN 0 i s beer shie o
L Le e sience of F pode-
TS ETe T SE Saor i i

Complexity 9/29/97 page 9

Conjecture:

This is still an open queatmn although most
mathematicians/computer scientists believe
it to be true.

It 75 been proved that

/r P =NP , then TSP &P |

that is, 17 there exisi profifems f"-::?r Which no
polvnomial lime algoritiims can be found, the
iraveling salesman probiem is one such profiem.

A problem is called NP-Complete
if all problems in NP can be
-, reduced in polynomial time

mome. % to that problem.

It is known that the TSP
is NP-complete....

if, therefore, it is ever
shown that TSP = P, then
NP =P.

Complexity 9/29/97 page 10

Caveal.
The fact that no polynomial time algorithm is

known for the TSP does not imply that no such
algorithm exists!

Until the publication in 1979 by L.G. Khachian
of his "Ellipsoid” algorithm for linear program-
ming, no polynomial time algorithm was known

for LP!

Fae Srmniex melinod for L 1s VO poldinomial Lme
M LR WArSE CESE, I WINCH eVEer) 8RS TeRSIe
SOfEian 75 ancounierad!

