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Benders' Decomposition
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Benders' Decomposition

(alzo known as Benders' Partitioning)

I's"| Theory

Applications

iz2| Capacitated Plant Location

I'=°| Stochastic LP with Recourse

@D L Bricker, U. of A&, 1992
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Consider the problem Minimize cx + dy
subjectto Ax + By = b
x =0
v EY

The variables x are continuous, but the variables
y are ‘complicating” in some way...

often
Y={y|yie (0]}

i.e., v is binary integer.

@D L Bricker, U. of A&, 1992

A kev concept in Benders' algorithm is that
of partitioning the variables into two sets (x & v)
and "projecting” the problem onto the v variables.

Define viy) = dy + min {c:&: |Ax = b-By,x = U}

The original problem
is clearly seen to be
equivalent to: subject to y €Y

Minimize v(y)

@D L Bricker, U. of A&, 1992
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Evaluating viv) entails solving an LP problem in x,
or, by LP duality theory, its dual LP:

v(y) = dy + max {(h‘BF}T“ | Aluce uz 'D}

What are the characteristics of this function?

@D L Bricker, U. of A&, 1992

For simplicity, assume that the primal LP

min{c:ﬁ|A:~::_=-h—B}r,:~:::ﬂ}

is alwavs feasible for every choice of Y (e.g.,
x includes "artificial” variables with high costs).

Then the dual LF
max {(h—B}F)Tu | Alu = c, U= D}

has a bounded feasible region.

@D L Bricker, U. of A&, 1992
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In principle, it is =3
possible to identify
and enumerate all
of the extreme
points of the
dual feasible u
region.
n principle then
ane colld evaliate
the dual LF obrective
af each extreme pi,
(b-By)'u!
& choose the best.

E10.

That is, we can evaluate the function v(v) by

. T.—'\-\.
=d b-B J
viy)=dy + mﬁ‘ﬂ%‘“ {( V) u}

" s )
= i L +
v(y) = maximum &y B
where Gl = [{;j]T B+d, p’=bu

S0 we see that the function vIV/ [s the maxroig
aof a flarge/ set of Ifnear functions i v/

@D L Bricker, U. of A&, 1992
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viy) is piecewise b oy +
linear & convexl

For iffusiratron, consrder b
F = real numbers.

@D L Bricker, U. of A&, 1992

Minimize 18x; + 8xs + 20x3 + 8y
subjectto 3x;+ X2+ xX3+2y 206 |
X1+ X2+ 4dxz+ v = 10
xi= 0,j=1,2,3,4

ve{0,1,2,3,..12]

Derine " min 18x; + 8x, + 20x3

subject to 3x; + x2+ %3 = 0- 2y
X{+ X7 +4x3 = 10 -y

5 xjz 0,1=1,2,3,4

viv)= 8y + «

@D L Bricker, U. of A&, 1992
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fhe runclion v may be evalvaled by solving eilher

Drimal 1D " min 18x; + 8x2 + 20x3
subject to 3x + X2+ x3 = 0-2y

viv)= 8y + <«
X{+ Xz +4x3 = 10 -y

5 Xxjz0,j=1,2,3 4
&
Lual LFP " max (6-2y)u; + (10-y)uz
subject to 3u; + uzx = 18
< u;+ uy = 8

viy) =8y +
u; +4uz = 20

u;=0,uz=0

@D L Bricker, U. of A&, 1992

maximization is with |
respect to ujand up |
with y temporarily |
fixed

-

max {(0-2v)ju; + (10-yv)jus
subject to 3u; + ux = 18
4 u;+ uz =< 8
u; +4us = 20
uy = 0,ux =0

viy) =3y +

L

The dual feasible region |
doesn't depend upon the |
value of y

@D L Bricker, U. of A&, 1992
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The dual feasible
region has five
extreme points

@D L Bricker, U. of A&, 1992

9/30/98

max (6-2yjuy + (10-y)us
subject to 3u; + uz = 18
u;+ uz= 3

u +4uz < 20 |
u=0,u =0

The solution of the LP
must be one of these
extreme points.

U

Extreme 8y +{6-2vju
point + (10-y)uz |

(0,0) 8y
(0,5) 3y + 5

@D L Bricker, U. of A&, 1992

~

y Forany vy,
o | | the value of

(4.4) —4y + 64 L vly)is the
(5,3) S5y + 60 | maximum of
(E-,U) —4dy + 36 these five

linear functions

L
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EXAMPLE v

Support 1 3 ) 7 9

Sy 8 24 40 ob F

3y + 00 D3 2957 bog /1= /7]
-4y + 64 | 6057 92 44 36 20
-0y + 60 oD 45 35 29 15
-4y + 30 32 24 16 O 0

@D L Bricker, U. of A&, 1992

hE
a0
70-
60
il
40 -
30-
20 -

104

a

@0 L Ericker, U.ofl14, .. 0 1 2 3 4 5 & 7 & &8 10 11
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Note, however, that v(y) is to be evaluated by
solving a linear programming problem, not by
identifying all of the dual extreme points and
computing the corresponding linear function
of v.

The number of linear functions which define
v(y) is, in general, "astronomical” |

@D L Bricker, U. of A&, 1992

— . Suppose that v(y)is
Apprnxquatlng . the maximum of P linear
the function v(y) functions (“supports”)

_ . hj ’“‘]}
= ¢y +
viy) mafiig]xli}gm{ y+ b

If k supports are used (where k<P), we get an
underestimate of viy):

- maximum{&y + P} |
Ek(}’}—mﬁlggm{m v+ Br|

@D L Bricker, U. of A&, 1992
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Note that v,(y) < viy), ie, b

it underestimates v(y)

@D L Bricker, U. of A&, 1992

Solve Partial
| begin | Master Problem
e, miny (y)styeY
Je
N Solve Subproblem Improve approxi-
Imtialization : :

. | Evaluate v(v) by mation by using
select arbitrary solving LP with dual extreme pt to
yer, kel fixed ¥ . generate new

support, kelk+]
YES A NO
<—w
i

Benders’

Decomposition

Algnr‘ithm

@0 L EMcker, U. of 14, 1993
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Solving the . Ateach iteration, we must solve
Partial Master

Minimize ¥ ,(y)

Problem
VEY

where ¥.(y) isthe current approximation to w(y),

that is, vi(y) = maximum {-:11 y+

1212k

How do we aocomplish (hiss

@D.L.Eﬂr’icker‘ U.oof |4, 1992

Minimize [ma}:imum {ﬁj v+ B }}
Ve 1212k

Mimimize z
-

&v By introducing
a new (cnntmunus) subject to
;}féf}éf}ff;.:f': variable z, we can

& write the master -
" problem as an
= "almost-pure”
;}féf}ff}f.;";'_;:":_- integer LP.

'Ei}

IM’

aly+
2
F

'LTJ}

I‘J
R

Lzzaky+ BF
y = Y, z unrestricted
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Solving th The Aual/ Simpl/ex Method
wanghl € should be used in solving
ubproblem the subproblems...

The optimal dual solution U of the previous
subproblem will still be feasible in the next
subproblem, and can be used as the initial
basic feasible solution of the dual, whereas
using the gr7imz/ simplex method would
generally require a Phase—-One procedure with
artificial variables in order to obtain an initial
basic feasible solution.

@D L Bricker, U. of A&, 1992

Solving the Use of the Dual Simplex Method
Subproblems yields another "bonus”™:

Each dual-feasible solution encountered during
the solution of a subproblem can be used to
generate another linear support, thereby
improving the approximation of the function vi(y)

That is, multiple supports can be added at each
iteration of Benders’ algorithm!

@D L Bricker, U. of A&, 1992
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Consider | Minimize 18x + 8x2 + 20x3 + 8y
again our subjectto  3x1+ xz+ x3+2yz26 |
example: X1+ Xz + 4xz+ v = 10

xj= 0,j=1,2,3,4
ve {0,1,2,3,...12]

Let ¥y =0 be our initial "quess”

lteration #1

We must next evaluate v(Q)
by solving the LP with y=0.

@D L Bricker, U. of A&, 1992

Subproblem Evaluate v(0)

vi0) maxbu; + 10us
s.t. (3u; +u>x= 18
u;+ uy = 8
u; + 4uz = 20
L uyz0, usz=0

The maximum occurs at the
extreme point (4,4), which we

e

will label U

@D L Bricker, U. of A&, 1992
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Our initial approximation for the
function v is

v (y) =8y +max (6-2y)u;+ (10-y)u,
= - 4y + 64

Note that welj=1u{0) = &

FREE 15, 10e Z00raxiimaiian
15 exact, s = v et o =il

@D L Bricker, U. of A&, 1992

Solving partial minimize v,(y) = - 4y + 64
. s.t. ye{0,1,2,3,... 12}

The minimum occurs at y = 12
where vi(12) = 16.

a0

vi(y)

1 T T 1
a1 2 3 4 5 &6 7 8 9 1011 12

@D L Bricker, U. of A&, 1992
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Evaluate v(12), i.e.

v(12) =8 x12+ max (6-2x12)u; + (10-12)uz

s.t. Ju;+uzx = 18 @
u;+ uz = 8

u; + 4uz = 20
u=0, uzz=0

The maximum occurs at the extreme point (0,0),

which we will label G°

Sy v(12) =96 > 16 = v,(12), so we do
Criterion ﬁter‘minate.

@D L Bricker, U. of A&, 1992

Adding a linear support to N
J PP (G2 =(0,0)

our approximating function

- -~ - -
Gy + B =8y + (6-2y)ul + (10-y)u3
= S}T
and so we obtain the new approximation

EE(}F} = max |- 4y+04, 8v |

@D L Bricker, U. of A&, 1992
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Solving partial Minimize
Master Problem v,(y) = max {- 4y+64, 8y }

s5.t. ye{0,1,2,3,... 12}

v (y) .
] The minimum
50 occurs at y=o,
1 il A
P -~ where v (5)=44
-~ o
| | | | | | | | | | |
o1 2 3 4 6 7 &8 9 1011 12

T
2
@D L Bricker, U. of A&, 1992

I IEIE|  Evaluate v(5), i.e.

vid) =8 x5+ max (0-2x3)juy +{10-3mz =-4u;+5uz
s.t.3u; + uz= 18§
u; + uz = 3
u; + 4uz = 20
u=0, uz=0
The minimum value is 65, achieved at the
extreme point (0,5), which we label U3

SLEUYSULE . (5)=44 < 65=v(5) 50 we cannot
Criterion || terminate

@D L Bricker, U. of A&, 1992
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Adding a linear support to

our approximating function u’=(0,5)

&3y + 3= 8y + (6-2y)ur+ (10-y)u3
— 3y + 50

and so we obtain the new approximation

v-(y) = max {- 4y+64, 8y, 3y + 50 ]

@D L Bricker, U. of A&, 1992

Solving partial Minimize

MEEICIMEIEINE v (y) = max {- 4y+64, 8y, 3y + 50 }
s.t. ye10,1,2,3,... 12}

v.(y)

The minimum
SD__---""--“ --"H-____-_- ..__.-"-.... DCCUFS at. F=21
- where v.(2)=56

T T T 1
1 2 3 4 5 6 7 &8 9 1011 12

@D L Bricker, U. of A&, 1992
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‘ Subproblem \ Evaluate v(2), i.e.

vi2) =82+ max (0-2x2)u) +{10-2uz = 2u; +8ur
s.t. 3u; +uz= 18

u; + ur = 8
u; + 4uz = 20
u=0, uz=0

The minimum wvalue is 56, achieved at both
the extreme points u'=(4,4) and 43=(0,5)

LUl v (2)= 56=v(2) s0 we can now
Criterion [ terminate!

@D L Bricker, U. of A&, 1992

Suboptimizing the
Partial Master Problem |

Benders’ master problem was to choose ye Y
so as to

Minimize v . (y)

where ¥, (y) 15 the current approximation to

viy), i.e.,
o i, B
vily) = malﬁgjljg}{um{ﬂlw [3}

@D L Bricker, U. of A&, 1992
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This 15 accomplished by solving to optimality
the (almost-pure) integer LP:

Minimize z -
subject to

'El}

I‘u’

aly+
F

'Ei}
B

I‘J
R

Lz=aky+ P
y £ Y, z unrestricted

by an implicit enumeration (branch-&- I:mund)
algorithm. This is generally the most costly

part of the total computation!

@D L Bricker, U. of A&, 1992

[y) is less than the
is a candidate for optimality.

Any y such that v
incumbent, V*,

@D L Bricker, U. of A&, 1992
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Rather than optimizing the master problem,
therefore, we might seek only a feasible
solution to the "pure” integer LP:

-

This modification to Benders' algorithm will
result in significant savings in CPU time.

@D L Bricker, U. of A&, 1992

This is a modification of Benders' algorithm
with suboptimization of the Master Problem

Suboptimizing the master Fi”q ¥ E_Y

problem has been SE’t'EWTQ
accomplished when T aly+ple v
reaching a terminal node B2y+ ey

- .

of the enumeration tree.

@D L Bricker, U. of A&, 1992
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The next partial master problem differs from
the previous one in that

# it has an added constraint

# the right-hand-side ¥* might be lower
(if the incumbent has been replaced by
the solution of the subproblem just
solved)

Each of these changes to the system of
inequalities reduces the feasible region
of the system....

@D L Bricker, U. of A&, 1992

Hence, any portion of the enumeration tree
which was fathomed during the previous
tree search remains fathomed when the
subsequent tree search begins.

That 1s, the enumeration can be “"restarted”
at the terminal node which had been reached
in the previous Master Problem solution.

The enumeration tree is completely searched
only once during the entire algorithm!

Ka

@D L Bricker, U. of A&, 1992



