

ASSIGNMENT PROBLEM

author

This Hypercard stack copyright 1997 by
Dennis L. Bricker
Dept. of Industrial Engineering
University of Iowa
e-mail: dennis-bricker@uiowa.edu

D.L. Bricker

Linear Assignment Problem

Quadratic Assignment Problem

Generalized Assignment Problem

D.L. Bricker

Assignment Problem

machines	jobs				
	A	B	C	D	E
1	5	3	2	3	4
2	6	2	1	4	3
3	4	3	3	2	2
4	5	4	2	5	2
5	3	3	2	4	3

cost of completing job

What is the least-cost way of assigning a machine to each of 5 jobs (one job/machine)?

D.L. Bricker

THE ASSIGNMENT PROBLEM

Each of n *resources* must be assigned to one of n *activities*, and each activity is assigned exactly one resource.

A cost C_{ij} results if resource i is assigned to activity j .

The objective is to minimize the total cost of assigning every resource to an activity.

Example: assigning jobs to machines in a job-shop

D.L. Bricker

IP formulation

Let $X_{ij} = \begin{cases} 1 & \text{if resource } i \text{ is assigned to activity } j \\ 0 & \text{otherwise} \end{cases}$

AP

$$\text{Minimize } \sum_{i=1}^n \sum_{j=1}^n C_{ij} X_{ij}$$

subject to

$$\sum_{j=1}^n X_{ij} = 1 \text{ for } i=1, 2, \dots, n \quad \leftarrow \begin{array}{l} \text{each resource is} \\ \text{assigned to exactly} \\ \text{one activity} \end{array}$$

$$\sum_{i=1}^n X_{ij} = 1 \text{ for } j=1, 2, \dots, n \quad \leftarrow \begin{array}{l} \text{each activity is} \\ \text{assigned exactly} \\ \text{one resource} \end{array}$$

$$X_{ij} \in \{0,1\} \text{ for all } i \text{ & } j$$

D.L. Bricker

AP

$$\text{Minimize } \sum_{i=1}^n \sum_{j=1}^n C_{ij} X_{ij}$$

subject to

$$\sum_{j=1}^n X_{ij} = 1 \text{ for } i=1, 2, \dots, n$$

$$\sum_{i=1}^n X_{ij} = 1 \text{ for } j=1, 2, \dots, n$$

$$X_{ij} \in \{0,1\} \text{ for all } i \text{ & } j$$

Note that this is a special case of the transportation problem (with supplies & demands each equal to 1)!

If the restriction that X is 0 or 1 is replaced with a nonnegativity restriction, the LP solution will still be integer!

D.L. Bricker

Minimize $\sum_{i=1}^n \sum_{j=1}^n C_{ij} X_{ij}$

subject to

$$\sum_{j=1}^n X_{ij} = 1 \text{ for } i=1, 2, \dots, n$$

$$\sum_{i=1}^n X_{ij} = 1 \text{ for } j=1, 2, \dots, n$$

$$X_{ij} \in \{0,1\} \text{ for all } i \text{ & } j$$

number of basic variables is $2n-1$.

number of positive variables is n

Although AP could be solved by the simplex method for TP, all the basic solutions are highly degenerate, which lessens the efficiency of the algorithm.

D.L. Bricker

Properties of the Assignment Problem

For each i , exactly one assignment $X_{ij}=1$ is made

For each j , exactly one assignment $X_{ij}=1$ is made

Therefore,

If a number δ is added to (or subtracted from) every cost in a certain row (or column) of the matrix C , then every feasible set of assignments will have its cost increased (or decreased) by δ , and the optimal set of assignments remains optimal!

For example, if we add δ to row 1, the total cost is increased by

$$\sum_{j=1}^n \delta X_{1j} = \delta \sum_{j=1}^n X_{1j} = \delta \text{ (independent of X)}$$

D.L. Bricker

Properties of the Assignment Problem

If all costs C_{ij} are nonnegative, and if there is a set of assignments with total cost equal to zero, then that set of assignments must be optimal.

The "Hungarian Method" solves the assignment problem by adding &/or subtracting quantities in rows &/or columns until an assignment with zero cost is found.

D.L. Bricker

Example

Four machines are available to process four jobs.

The processing time for each machine/job assignment is as follows:

Machine	Job			
	1	2	3	4
A	4	6	5	5
B	7	4	5	6
C	4	7	6	4
D	5	3	4	7

What is the assignment (one job per machine) which will minimize total processing time?

D.L. Bricker

Row reduction

machine	job			
	1	2	3	4
A	4	6	5	5
B	7	4	5	6
C	4	7	6	4
D	5	3	4	7

For example, 4 is subtracted from each cost in the first row.

machine	job			
	1	2	3	4
A	0	2	1	1
B	3	0	1	2
C	0	3	2	0
D	2	0	1	4

From each row, subtract the smallest cost.
This introduces at least one zero into each row!

D.L. Bricker

Column reduction

machine	job			
	1	2	3	4
A	0	2	1	1
B	3	0	1	2
C	0	3	2	0
D	2	0	1	4

Only column 3 lacks a zero, so only column 3 is reduced:

machine	job			
	1	2	3	4
A	0	2	0	1
B	3	0	0	2
C	0	3	1	0
D	2	0	0	4

From each column, subtract the smallest cost.
If a column already has a zero, it is unchanged.
Otherwise, a zero is introduced into the column.

D.L. Bricker

	job				
	1	2	3	4	
machine	A	0	2	0	1
B	3	0	0	2	
C	0	3	1	0	
D	2	0	0	4	

Examining the cost matrix, we can find an assignment with total cost equal to zero:

machine	job
A	1
B	2
C	4
D	3

Therefore, this must be an optimal assignment!

D.L. Bricker

Sometimes, however, one cannot find a zero-cost assignment after row- & column-reduction.

*For example:
machine C cannot
be assigned to both
jobs 1 & 4, so one
job must be
assigned a machine
with positive cost*

	job				
	1	2	3	4	
machine	A	4	2	0	1
B	3	0	0	2	
C	0	3	1	0	
D	2	0	0	4	

D.L. Bricker

Hungarian Algorithm

Step 0 Convert to standard form, with
rows = # columns

Step 1 *Row reduction:* find the smallest cost
in each row, and reduce all costs in that row
by this amount.

Step 2 *Column reduction:* find the smallest
cost in each column, and reduce all costs in
the column by this amount.

D.L. Bricker

Hungarian Algorithm

Step 3 find the minimum number of lines
through rows &/or columns necessary to
cover all of the zeroes in the cost matrix.
If this equals n, STOP.

Step 4 locate the smallest unlined cost, \bar{c} .
Subtract this cost from all unlined costs,
and add to costs at intersections of lines.
Return to step 3.

D.L. Bricker

Justification for step 4:

"Subtract smallest unlined cost \bar{c} from all unlined costs; add to costs at intersections of lines."

is equivalent to

"Subtract $\frac{1}{2}\bar{c}$ from each unlined row & each unlined column.

Add $\frac{1}{2}\bar{c}$ to each lined row and each lined column."

D.L. Bricker

"Subtract $\frac{1}{2}\bar{c}$ from each unlined row & each unlined column.

Add $\frac{1}{2}\bar{c}$ to each lined row and each lined column."

cost with only one line
is changed by $\frac{1}{2}\bar{c} - \frac{1}{2}\bar{c}$
i.e., zero

cost with no lines is
changed by $-\frac{1}{2}\bar{c} - \frac{1}{2}\bar{c}$
i.e., $-\bar{c}$

*	*	*	0	*	$-\frac{1}{2}\bar{c}$
*	*	0	*	0	$+\frac{1}{2}\bar{c}$
*	\bar{c}	*	*	*	$-\frac{1}{2}\bar{c}$
*	*	*	*	*	$-\frac{1}{2}\bar{c}$
*	0	*	*	*	$+\frac{1}{2}\bar{c}$

* = nonzero cost

cost with two lines is
changed by $+\frac{1}{2}\bar{c} + \frac{1}{2}\bar{c}$
i.e., $+\bar{c}$

Therefore, step 4 redistributes the zeroes without changing the optimal assignment.

$\begin{aligned} \text{cost with only one line} \\ \text{is changed by } 1/2\bar{c} - 1/2\bar{c} \\ \text{i.e., zero} \end{aligned}$	$\begin{array}{ccccccc} * & * & * & 0 & * & -1/2\bar{c} \\ * & * & 0 & * & 0 & +1/2\bar{c} \\ * & \bar{c} & * & * & * & -1/2\bar{c} \\ * & * & * & * & * & -1/2\bar{c} \\ * & 0 & * & * & * & +1/2\bar{c} \end{array}$
$\begin{aligned} \text{cost with no lines is} \\ \text{changed by } -1/2\bar{c} - 1/2\bar{c} \\ \text{i.e., } -\bar{c} \end{aligned}$	$\begin{array}{ccccccc} * & * & * & 0 & * & -1/2\bar{c} \\ * & * & 0 & * & 0 & +1/2\bar{c} \\ * & \bar{c} & * & * & * & -1/2\bar{c} \\ * & * & * & * & * & -1/2\bar{c} \\ * & 0 & * & * & * & +1/2\bar{c} \end{array}$

$*$ = nonzero cost

$\begin{aligned} \text{cost with two lines is} \\ \text{changed by } +1/2\bar{c} + 1/2\bar{c} \\ \text{i.e., } +\bar{c} \end{aligned}$

D.L. Bricker

Row reduction

	job				
	1	2	3	4	
machine	A	6	4	5	5
	B	7	4	5	6
	C	4	7	6	4
	D	5	3	4	7

Up

	job				
	1	2	3	4	
machine	A	2	0	1	1
	B	3	0	1	2
	C	0	3	2	0
	D	2	0	1	4

Let's modify the original example somewhat, and repeat the row and column reductions.

D.L. Bricker

Column reduction

machine	job			
	1	2	3	4
A	2	0	1	1
B	3	0	1	2
C	0	3	2	0
D	2	0	1	4

⇒

machine	job			
	1	2	3	4
A	2	0	0	1
B	3	0	0	2
C	0	3	1	0
D	2	0	0	4

D.L. Bricker

As we saw earlier, there is no zero-cost assignment possible with this matrix.

This can be determined by the fact that the zeroes can be covered with only 3 lines:

machine	job			
	1	2	3	4
A	2	0	0	1
B	3	0	0	2
C	0	3	1	0
D	2	0	0	4

machine	job			
	1	2	3	4
A	2	0	0	1
B	3	0	0	2
C	0	3	1	0
D	2	0	0	4

Therefore perform the reduction in step 4:

Step 4 locate the smallest unlined cost, \bar{c} .

Subtract this cost from all unlined costs, and add to costs at intersections of lines.

		job			
		1	2	3	4
machine	A	2	0	0	1
	B	3	0	0	2
machine	C	0	3	1	0
	D	2	0	0	4

→

		job			
		1	2	3	4
machine	A	1	0	0	0
	B	2	0	0	1
machine	C	0	4	2	0
	D	1	0	0	3

D.L. Bricker

The new cost matrix has a zero not covered by a line:

The zeroes now require 4 lines in order to cover all of them!

		job			
		1	2	3	4
machine	A	1	0	0	0
	B	2	0	0	1
machine	C	0	4	2	0
	D	1	0	0	3

→

		job			
		1	2	3	4
machine	A	1	0	0	0
	B	2	0	0	1
machine	C	0	4	2	0
	D	1	0	0	3

In fact, there are two different zero-cost assignments, both of them optimal for this problem:

	job				
	1	2	3	4	
machine	A	1	0	0	0
	B	2	0	0	1
	C	0	4	2	0
	D	1	0	0	3

	job				
	1	2	3	4	
machine	A	1	0	0	0
	B	2	0	0	1
	C	0	4	2	0
	D	1	0	0	3