

AIRLINE CREW SCHEDULING

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu

An airline operates 7 flights daily between New York & Chicago.

Crews are based in either city, and fly to-&-from the other city each day.

Flight #	Leave Chgo.	Arrive N.Y.	Flight #	Leave N.Y.	Arrive Chgo.
1	6 am	10 am	1	7 am	9 am
2	9 am	1 pm	2	8 am	10 am
3	noon	4 pm	3	10 am	noon
4	3 pm	7 pm	4	noon	2 pm
5	5 pm	9 pm	5	2 pm	4 pm
6	7 pm	11 pm	6	4 pm	6 pm
7	8 pm	midnight	7	6 pm	8 pm

- Each of airline's crews live either in Chicago or in New York
- Each day, a crew must fly one NY-Chgo and one Chgo-NY flight
- There must be at least 1 hour layover time between flights
- At end of the day, a crew must be in its home city.

- The airline wants to assign the flights to the crews to minimize total layover time
- How many crews should be based in each city?

$$X_{ij} = \begin{cases} 1 & \text{if a crew is assigned} \\ & \text{flight \#i from Chgo-NY} \\ & \text{and flight \#j from NY-Chgo.} \\ 0 & \text{otherwise} \end{cases}$$

For example, $X_{14} = 1$ indicates that a crew is assigned Chgo-NY Flight #1, departing at 6 AM & arriving at 10 AM. After a 2-hour layover, they return to Chicago on NY-Chgo Flight #4, departing at noon and arriving in Chicago at 2 PM.

Layover times for flight pairs

	$j=1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$							
i	1	∞	∞	∞	2	4	6	8
2	∞	∞	∞	∞	1	3	5	
3	3	2	∞	∞	∞	∞	2	
4	6	5	3	1	∞	∞	∞	
5	8	7	5	3	1	∞	∞	
6	10	9	7	5	3	1	∞	
7	11	10	8	6	4	2	∞	

these pairs flown by a Chicago-based crew

these pairs are not feasible

Row Reduction

∞	∞	∞	2	4	6	8		∞	∞	∞	0	2	4	6
∞	∞	∞	∞	1	3	5		∞	∞	∞	∞	0	2	4
3	2	∞	∞	∞	∞	2		1	0	∞	∞	∞	∞	0
6	5	3	1	∞	∞	∞	\Rightarrow	5	4	2	0	∞	∞	∞
8	7	5	3	1	∞	∞		7	6	4	2	0	∞	∞
10	9	7	5	3	1	∞		9	8	6	4	2	0	∞
11	10	8	6	4	2	∞		9	8	6	4	2	0	∞

Column Reduction

∞	∞	∞	0	2	4	6		∞	∞	∞	0	2	4	6
∞	∞	∞	∞	0	2	4		∞	∞	∞	∞	0	2	4
1	0	∞	∞	∞	∞	0		0	0	∞	∞	∞	∞	0
5	4	2	0	∞	∞	∞	\Rightarrow	4	4	0	0	∞	∞	∞
7	6	4	2	0	∞	∞		6	6	2	2	0	∞	∞
9	8	6	4	2	0	∞		8	8	4	4	2	0	∞
9	8	6	4	2	0	∞		8	8	4	4	2	0	∞

∞	∞	∞	0	2	4	6
∞	∞	∞	∞	0	2	4
0	0	∞	∞	∞	∞	0
4	4	0	0	∞	∞	∞
6	6	2	2	0	∞	∞
8	8	4	4	2	0	∞
8	8	4	4	2	0	∞

The zeroes can be covered by only five lines!

Therefore, the matrix reductions are not complete.

"Mixed Reduction"

∞	∞	∞	0	2	4	6		∞	∞	∞	0	2	4	2
∞	∞	∞	∞	0	2	4		∞	∞	∞	∞	0	2	0
0	0	∞	∞	∞	∞	0		0	0	∞	∞	∞	∞	0
4	4	0	0	∞	∞	∞		0	0	0	0	∞	∞	∞
6	6	2	2	0	∞	∞		2	2	2	2	0	∞	∞
8	8	4	4	2	0	∞		4	4	4	4	2	0	∞
8	8	4	4	2	0	∞		4	4	4	4	2	0	∞

∞	∞	∞	0	2	4	2
∞	∞	∞	∞	0	2	0
0	0	∞	∞	∞	∞	0
0	0	0	0	∞	∞	∞
2	2	2	2	0	∞	∞
4	4	4	4	2	0	∞
4	4	4	4	2	0	∞

Only six lines are required to cover all the zeroes!

Therefore, the matrix reductions are not complete.

"Mixed Reduction"

∞	∞	∞	0	2	4	2		∞	∞	∞	0	2	4	2
∞	∞	∞	∞	0	2	0		∞	∞	∞	∞	0	2	0
0	0	0	0	0	0	0		0	0	∞	∞	∞	∞	2
0	0	0	0	0	0	0		0	0	0	2	∞	∞	∞
2	2	2	2	0	∞	∞		0	0	0	2	0	∞	∞
4	4	4	4	2	0	∞		2	2	2	4	2	0	∞
4	4	4	4	2	0	∞		2	2	2	4	2	0	∞

0	0	0	0	2	4	2	
0	0	0	0	0	2	0	
0	0	0	0	0	0	2	
0	0	0	0	2	∞	∞	
0	0	0	0	2	0	∞	
2	2	2	4	2	0	∞	
2	2	2	4	2	0	∞	

Only six lines are required to cover all the zeroes!

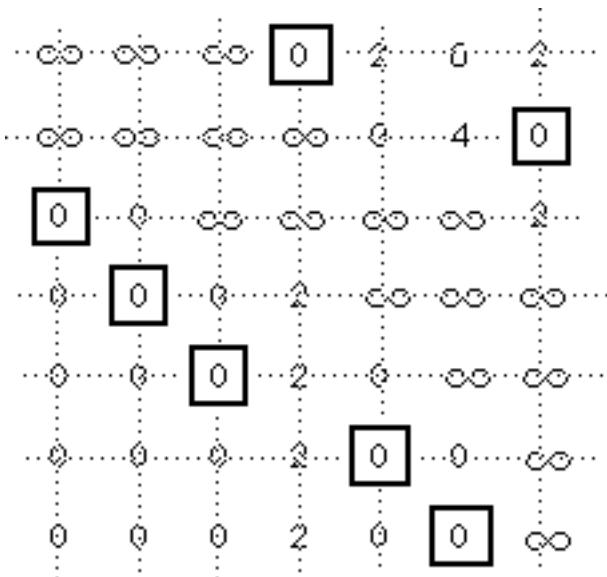
Therefore, the matrix reductions are not complete.

"Mixed Reduction"

∞ ∞ ∞ 0 2 4 2	∞ ∞ ∞ 0 2 6 2
∞ ∞ ∞ 0 2 0	∞ ∞ ∞ 0 4 0
0 ∞ ∞ ∞ ∞ 2	0 0 ∞ ∞ ∞ ∞ 2
0 0 0 2 ∞ ∞ ⇒	0 0 0 2 ∞ ∞ ∞
0 0 0 2 0 ∞	0 0 0 2 0 ∞ ∞
2 2 2 4 2 0 ∞	0 0 0 2 0 0 ∞
2 2 2 4 2 0 ∞	0 0 0 2 0 0 ∞

∞ ∞ ∞ 0 2 6 2
 ∞ ∞ ∞ 0 4 0
 0 ∞ ∞ ∞ ∞ 2
 0 0 2 ∞ ∞ ∞
 0 0 2 0 ∞ ∞
 0 0 2 0 0 ∞
 0 0 2 0 0 ∞

The zeroes cannot be covered by fewer than seven lines!


Therefore, we should be able to find a zero-cost assignment.

...	0	2	6	2
∞	∞	∞	∞	0	4	0	
0	0	∞	∞	∞	∞	2	
0	0	0	2	∞	∞	∞	
0	0	0	2	0	∞	∞	
0	0	0	2	0	0	∞	
0	0	0	2	0	0	∞	

We look for a row or a column with a single zero...

... this indicates a necessary assignment

...	0	2	0	2
...	0	4	0
0	0	∞	∞	∞	∞	∞	2
0	0	0	2	∞	∞	∞	∞
0	0	0	2	0	∞	∞	∞
0	0	0	2	0	0	∞	∞
0	0	0	2	0	0	∞	∞

*Total cost = 25 hours
(= total layover time)*

*(there are several
optimal solutions)*

Optimal Solution

2 Chicago-based crews, flying

Flight #1 to NY, then Flight #4 to Chgo.

Flight #2 to NY, then Flight #7 to Chgo.

5 New-York-based crews, flying

Flight #1 to Chgo, then Flight #3 to NY

Flight #2 to Chgo, then Flight #4 to NY

Flight #3 to Chgo, then Flight #5 to NY

Flight #5 to Chgo, then Flight #6 to NY

Flight #6 to Chgo, then Flight #7 to NY

