

Genetic Algorithms (GAs)

- heuristic methods—do not guarantee optimality
- iterative methods
- simulate biological evolution, which has enabled "nature" to develop species remarkably well adapted to their environment.

©Dennis Bricker, U. of Iowa, 1997

GA5

- development & theoretical foundation provided by:
 John Holland, Adaption in Natural and Artificial Systems, The University of Michigan Press, 1975.
- further developed & analyzed by Holland's student:

David Goldberg, *Genetic Algorithms* in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

- operate on a population of individuals which represent potential solutions to the problem
- from the population, a set of "good" individuals are selected to mate & form a new generation
- the quality of subsequent generations will (it is hoped!) gradually improve and approach optimality

- Fitness measure
- Selection
- Scaling fitness
- Crossover
- Mutation
- Generic GA Algorithm

ENCODING

Each individual in the population consists of a string, which "resembles" a biological chromosome composed of genes.

These genes may take on values from a finite set of digits or characters, called *alleles*. (Most frequently, the alleles are binary digits.)

Example: from the set of alleles {A,B,C} we might produce the individual ABCABBCABBC

©Dennis Bricker, U. of Iowa, 1997

FITNESS

For each individual i, we define a *fitness* value f(i) to measure how good it is.

Individuals representing good solutions will have a larger fitness value than those which correspond to poor solutions.

Used to determine which individuals *survive*: to produce the next generation.

"Survival of the fittest..."

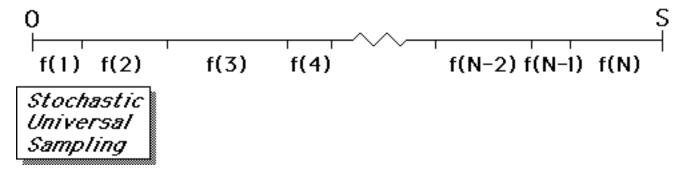
SELECTION

From the population at each generation, a GA randomly selects the fittest individuals to survive and mate to produce the next generation.

The simplest method for doing this is "stochastic sampling with replacement", in which individual

i is selected with probability
$$p_i = \frac{f(i)}{\sum_{j=1}^{N} f(j)}$$

This is repeated until N individuals have been selected.

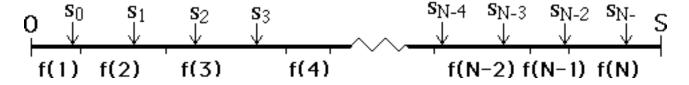

©Dennis Bricker, U. of Iowa, 1997

In sampling with replacement, the more fit individuals are likely to be selected, and may be selected several times. However, there is not guarantee that an individual whose fitness is above the population average will be selected

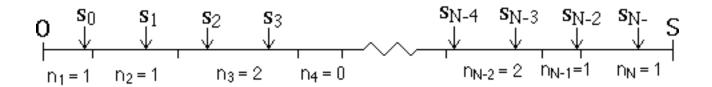
"Stochastic universal sampling" is a scheme which will quarantee this!

J.E. Baker, "Reducing bias and inefficiency in the selection algorithm", in *Genetic Algorithms & Their Applications:*Proceedings of the 2nd Int'l Conf. on Genetic Algorithms, J.J. Grefenstette (ed.), 1987.

- Compute S, the sum of the fitness values for the population.
- Map each fitness value in random order to contiguous segments of the interval [0,S] on the real line, such that each segment has length equal to its corresponding fitness value.



3. Generate a random number s₀ within the interval [0, S/N], the "average" interval.


$$o$$
 s_0 s_N

4. Compute the N equally-spaced numbers

$$\mathbf{s}_i = \mathbf{s}_0 + \mathbf{i} \times \frac{S}{N}$$
 , $\mathbf{i} = 0, 1, 2, \cdots N-1$

Let n_k be the number of values in the set $\{s_i\}$ which fall within interval k.

6. For each k (k=1,2,...N), create n_k copies of individual k and put into the mating pool.

©Dennis Bricker, U. of Iowa, 1997

SCALING The distribution of fitness values may strongly affect premature convergence of a genetic algorithm.

If a few individuals have much larger fitness values than the others, they will generate many more offspring and quickly dominate the generations which follow, and the algorithm will prematurely converge to a population of identical "clones" which are not optimal.

A way to prevent this is to scale the fitness values so as to maintain a constant "best fitness to average fitness" ratio, the scaling factor.

Given scaling factor λ and a set of fitness values $\{f_1, f_2, \dots f_N\}$, we scale them to $F_i = a f_i + b$ where a & b are chosen so that

$$\sum_{i=1}^{N}F_{i}=1$$

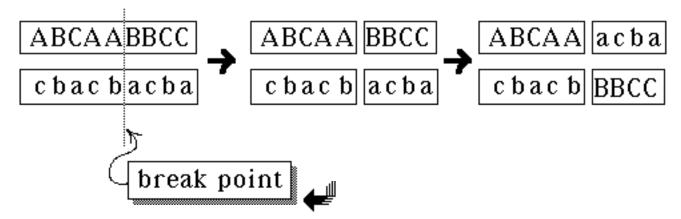
and

$$\lambda = \frac{\underset{i}{\max} \; F_i}{\sum_{i=1}^N F_i / N}$$

©Dennis Bricker, U. of Iowa, 1997

Solution: Choose a & b so that

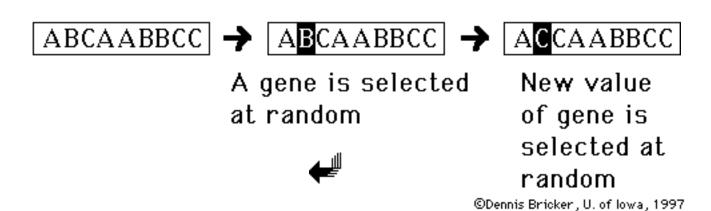
$$a = \frac{\lambda - 1}{N f_{max} - \sum_{i=1}^{N} f_i}$$


$$b = \frac{\lambda}{N} - a f_{max}$$

$$f_{max} = \max_{i} \{ f_i \}$$

where

CROSSOVER


Two individuals can mate to generate two offspring, by randomly selecting a break point and exchanging substrings:

©Dennis Bricker, U. of Iowa, 1997

MUTATION

With relatively low probability, a gene on a chromosome might change its value from one allele to another.

The GA is initiated with a random population of N individuals

At each iteration, the GA does the following:

- Evaluates the fitness of each individual in the population
- 2. Based on fitness, chooses individuals from the population based on fitness, to form a mating pool, and pairs these individuals randomly.

©Dennis Bricker, U. of Iowa, 1997

- For each pair of individuals in the mating pool,

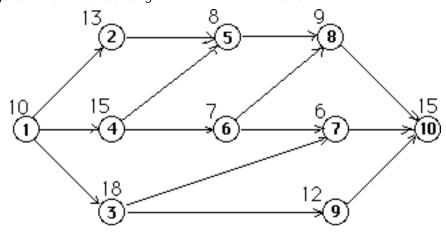
 either mates them & puts the two
 offspring into the new population

 or copies them directly into the new
 population
- 4. Carries out mutation on the new population
- 5. Checks whether to terminate.

Usually a genetic algorithm will terminate after a given number of iterations, or when nearly all of the individuals in the population are identical.

There are numerous decisions which much be made in the design of a genetic algorithm:

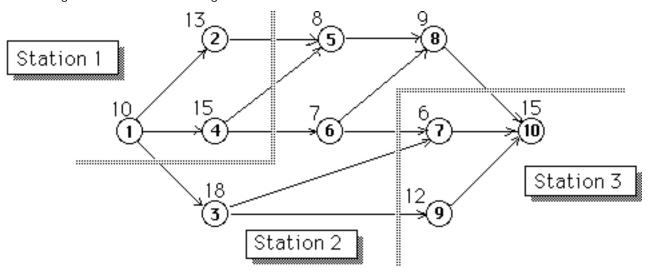
- population size
- probability of crossover
- probability of mutation
- whether to "seed" the initial population with "good" solutions
- scaling factor (best to average ratio) for fitness


See sample Pascal code in Chapter 3: "Computer Implementation of a Genetic Algorithm", in book by D. Goldberg.

©Dennis Bricker, U. of Iowa, 1997

GENETIC ALGORITHM FOR LINE BALANCING

Consider the Assembly Line Balancing (ALB) Problem in which the number of stations n is fixed, and the tasks are to be assigned to the stations so as to minimize the cycle time.


EXAMPLE

n = 3 stations 10 tasks

©Dennis Bricker, U. of Iowa, 1997

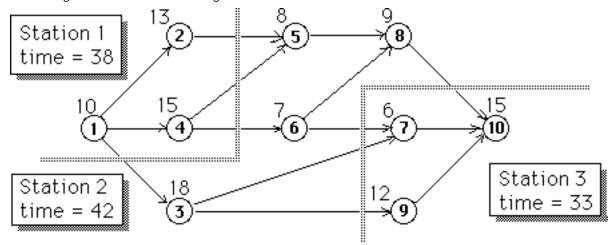
ENCODING

For the ALB problem, a natural encoding would be, using the station numbers as alleles, to identify the station to which task i is assigned by the number in the ith position on the string.

The assignment shown above would be coded by the string: 112122323

ENCODING

©Dennis Bricker, U. of Iowa, 1997


FITNESS

Our objective is to

- minimize the cycle time, while
- satisfy the precedence restrictions

The "fitness" measure of a solution should be a positive value which reflects both of these considerations,

with a larger value for those solutions which better satisfy the objective & restrictions.

The assignment of the ten tasks to the three stations shown above results in a cycle time equal to $T_{max} = max\{38, 42, 33\} = 42$.

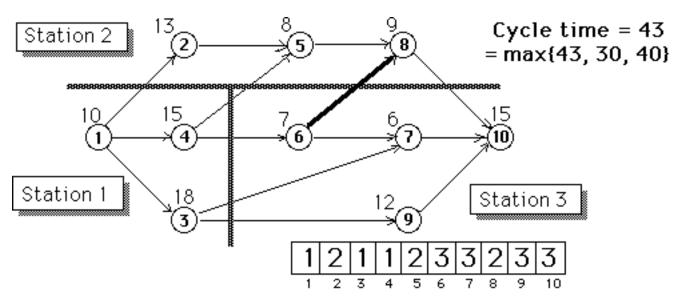
©Dennis Bricker, U. of Iowa, 1997

The cycle time is to be minimized, and so is an indication of "unfitness", i.e., the larger the cycle time, the more unfit the solution is.

If T(i) is the cycle time of individual i, then the fitness could be measured by

$$f\left(i\right) =k\times M\text{ - }T\left(i\right)$$

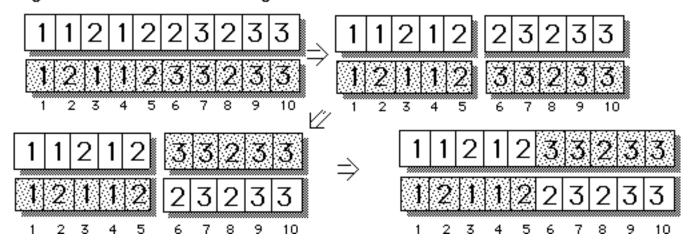
where

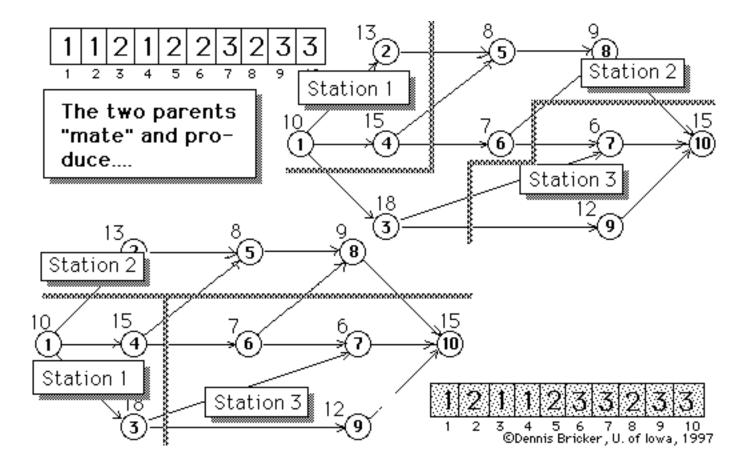

$$M = \underset{i}{maximum} \left\{ T \left(i \right) \right\}$$

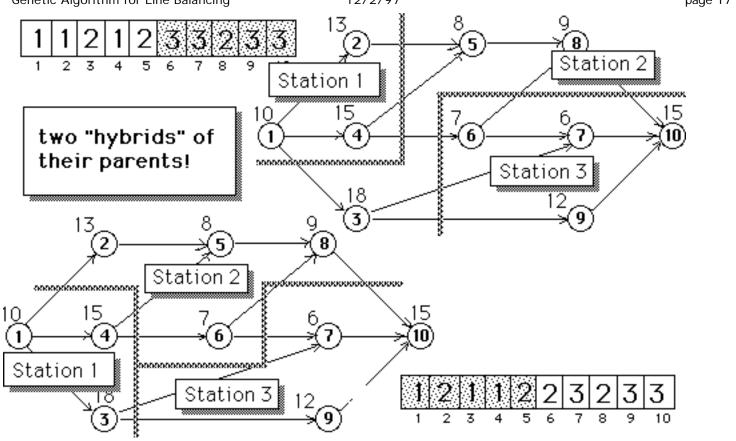
and k>1. With this definition, f(i)>0 for all i.

However, because individuals which violate one or more precedence restrictions might appear in the population, we will include a penalty P times the number V of such violations:

$$T(i) = T_{max} + P \times V$$

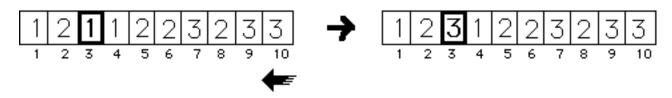

©Dennis Bricker, U. of Iowa, 1997


In the assignment shown, task 6 does not precede task 8 as required, and so we reduce the fitness by a penalty P=10:


CR0SS0VER

Suppose that the two individuals below have been paired for "mating", and the "break point" has been randomly chosen to be after the 5 "gene" in the string:

©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997

MUTATION

Mutation will be performed on each "gene" with some probability P_{mutate}, which is relatively small.

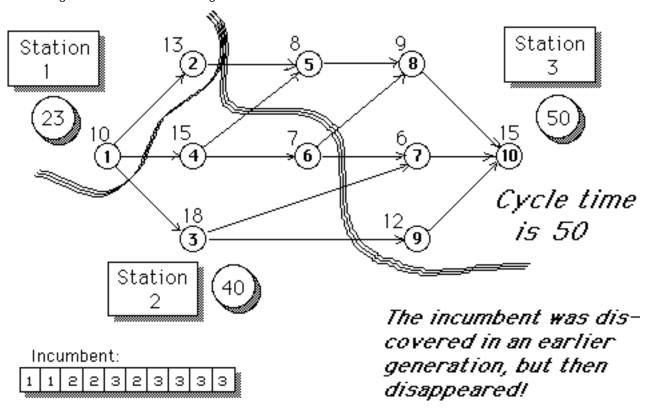
If a gene is randomly selected for mutation, it is assigned an allele selected uniformly from the set of alleles.

Consider the ALB problem used as an example earlier....

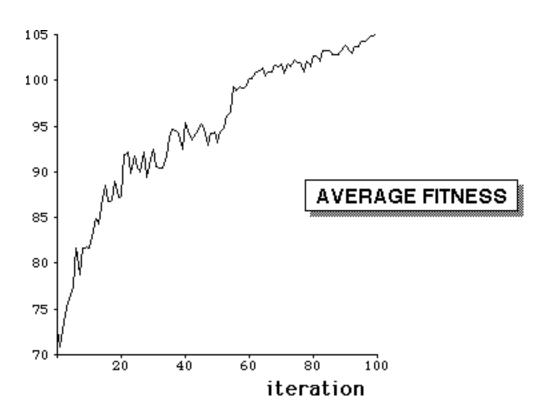
```
Genetic Algorithm Parameters
```

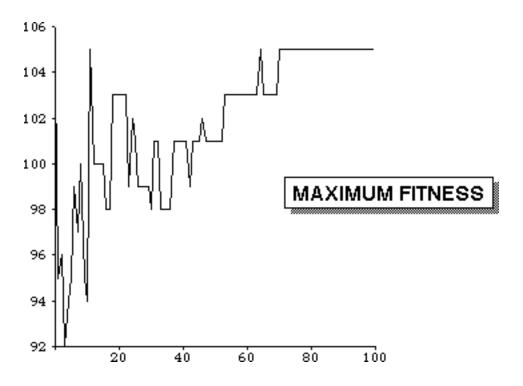
©Dennis Bricker, U. of Iowa, 1997

At the 100th iteration, the algorithm converged:


the population is completely uniform!

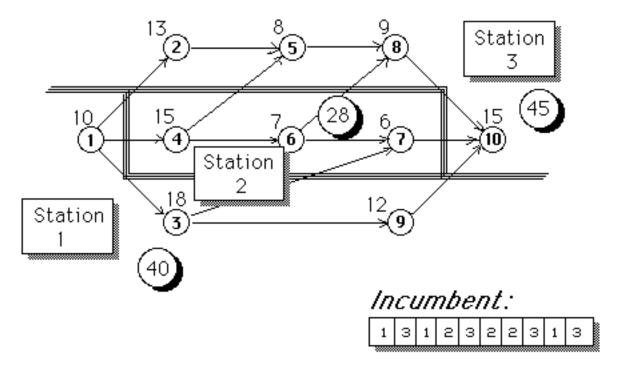
	#	Fit ness	Cycle time	# viola tions			Po	pu'	lat	ior)			
	1	105	50	В	1	3	2	1	3	2	2	2	1	3
	2	105	50	2	1	3	2	1	3	2	2	2	1	3
	3	105	50	2	1	3	2	1	3	2	2	2	1	3
	4	105	50	2	1	3	2	1	3	2	2	2	1	3
	5	105	50	2	1	3	2	1	3	2	2	2	1	3
	6	105	50	2	1	3	2	1	3	2	2	2	1	3
	7	105	50	2	1	3	2	1	3	2	2	2	1	3
	8	105	50	2	1	3	2	1	3	2	2	2	1	3
	9	105	50	2	1	3	2	1	3	2	2	2	1	3
1	10	105	50	2	1	3	2	1	3	2	2	2	1	3
1	1 1	105	50	2	1	3	2	1	3	2	2	2	1	3
1	12	105	50	2	1	3	2	1	3	2	2	2	1	3
1	13	105	50	2	1	3	2	1	3	2	2	2	1	3
1	14	105	50	2	1	3	2	1	3	2	2	2	1	3
1	15	105	50	2	1	3	2	1	3	2	2	2	1	3
1	16	105	50	2	1	3	2	1	3	2	2	2	1	3
:	17	105	50	2	1	3	2	1	3	2	2	2	1	3
:	18	105	50	2	1	3	2	1	3	2	2	2	1	
:	19	105	50	2	1	3	2	1	3	2	2	2	1	3
í	20	105	50	2	1	3	2	1	3	2	2	2	1	3


Incumbent:


1 1 2 2 3 2 3 3 3 3

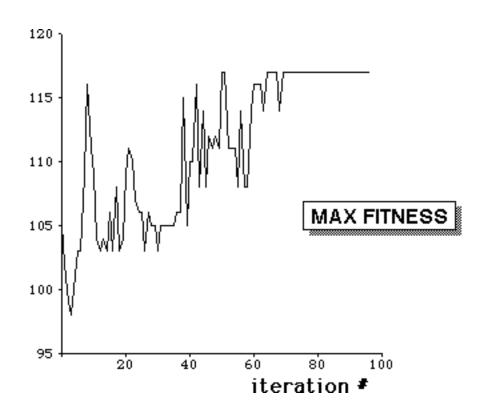
None in final generation is feasible!

©Dennis Bricker, U. of Iowa, 1997

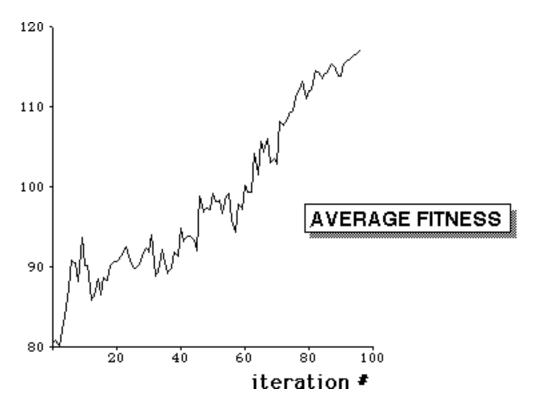

©Dennis Bricker, U. of Iowa, 1997

Running again, with a higher probability of crossover (90%)

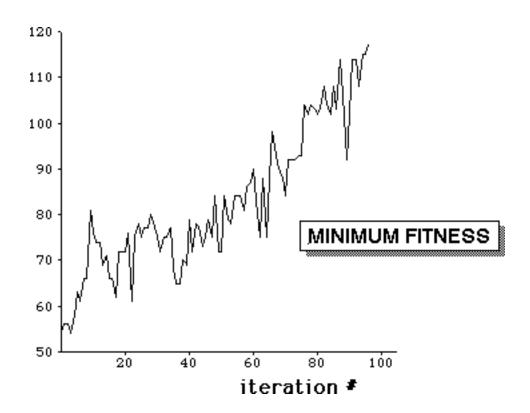
Again, the algorithm converged

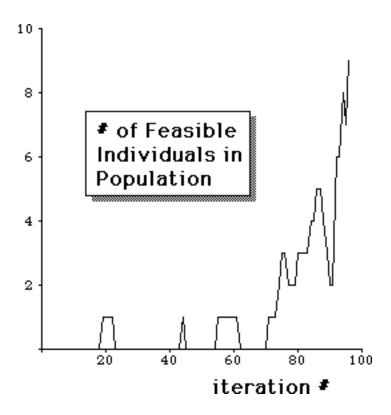

(population is not uniform, but has uniform fitness!)

#	Fit ness	Cycle time	# viola tions	Population
1	117	45	0	1312322313
2	117	45	1	WANT TOWNS WARRANT
3	117	45	1	TO A CONTROL OF THE PARTY OF TH
4	117	45	1	2500 MASSES (2000)
5	117	45	0	1312322313
6	117	45	0	1312322313
7	117	45	1	the things and the second and the se
8	117	45	0	1312322313
9	117	45	0	1312322313
10	117	45	0	1312322313
11	117	45	1	and a control of the
12	117	45	1	Anna Anna Maria
13	117	45	1	and the second of the second o
14	117	45	1	
15	117	45	1	Summer manager Street
16	117	45	1	2000AVA - 1 AV
17	117	45	0	1312322313
18	117	45	0	1312322313
19	117	45	0	1312322313
20	117	45	1	erengerengereggereggert blikelikerik



Cycle time is 45


©Dennis Bricker, U. of Iowa, 1997


©Dennis Bricker, U. of Iowa, 1997

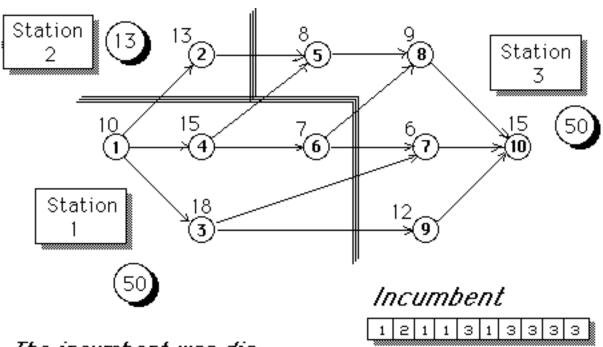
©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

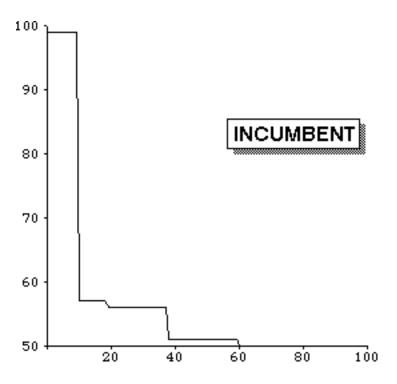
Running the GA again with Pcross=90%, it converged in 88th generation:

		Fitness	
generation	min	max	average #feasible

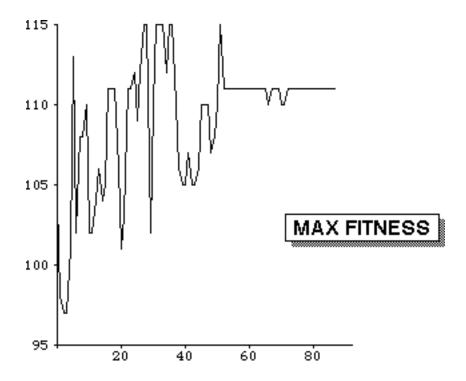

Annual Company of the	,			
72	91	110	101.90	¨ 1
73	92	111	101.15	0
74	86	111	102.20	0
75	92	111	101.75	0
76	88	111	103.70	0
77	92	111	104.90	0
78	92	111	105.45	1
79	89	111	104.95	1
80	99	111	107.40	0
81	101	111	108.75	0
82	102	111	108.70	0
83	102	111	109.05	0
84	103	111	109.40	0
85	91	111	109.20	0
86	106	111	110.20	0
87	108	111	110.60	0
88	110	111	110.95	Ø

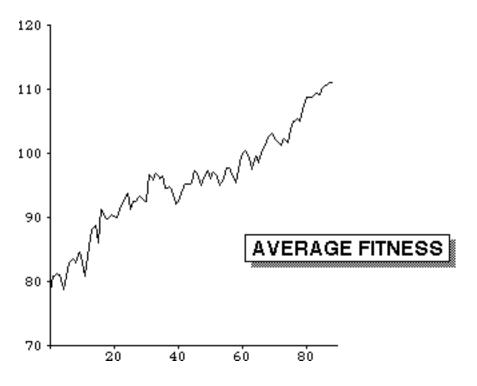
*** Converged!***

#	Fit ness	Cycle time	viola tions			Po	pul	lat	ior	ì			
1	111	50	1	1	3	1	2	3	1	1	3	2	ω
2	111	50	1	1	3	1	2	3	1	1	3	2	3
3	111	50	1	1	3	1	2	3	1	1	3	2	3
4	111	50	1	1	3	1	2	3	1	1	3	2	3
5	111	50	1	1	3	1	2	3	1	1	3	2	3
6	111	50	1	1	3	1	2	3	1	1	3	2	3
7	111	50	1	1	3	1	2	3	1	1	3	2	3
8	111	50	1	1	3	1	2	3	1	1	3	2	3
9	111	50	1	1	3	1	2	3	1	1	3	2	3
10	111	50	1	1	3	1	2	3	1	1	3	2	3
11	111	50	1	1	3	1	2	3	1	1	3	2	3
12	111	50	1	1	3	1	2	3	1	1	3	2	3
13	111	50	1	1	3	1	2	3	1	1	3	2	3
14	111	50	1	1	3	1	2	3	1	1	3	2	3
15	111	50	1	1	3	1	2	3	1	1	3	2	3
16	111	50	1	1	3	1	2	3	1	1	3	2	3
17	111	50	1	1	3	1	2	3	1	1	3	2	3
18	111	50	1	1	3	1	2	3	1	1	3	2	000000000000000000000000000000000000000
19	111	50	1	1	3	1	2	3	1	1	3	2	3
20	111	50	1	1	3	1	2	3	1	1	3	2	3

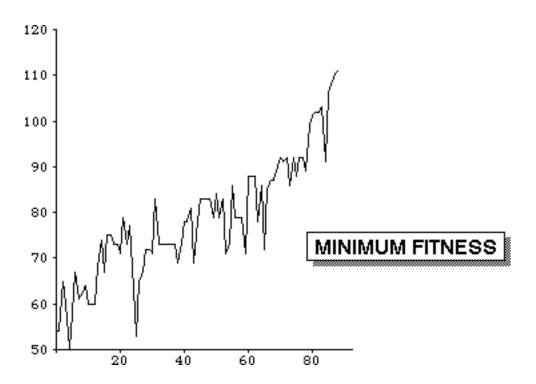

Converged to nonfeasible solution!

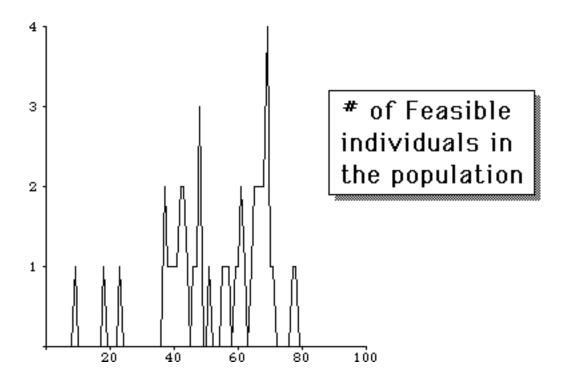
Spennis Bricker, U. of Iowa, 1997

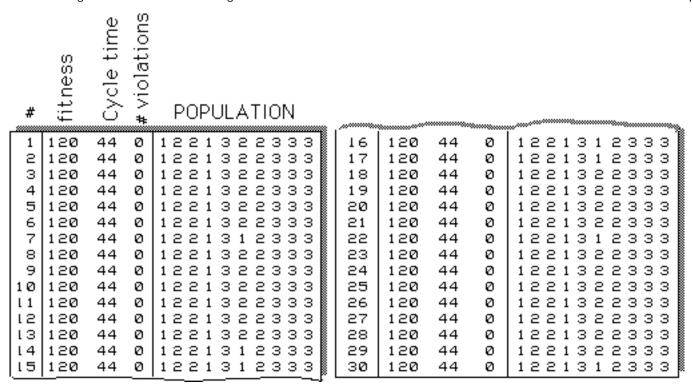



The incumbent was discovered in an earlier generation, and then disappeared!

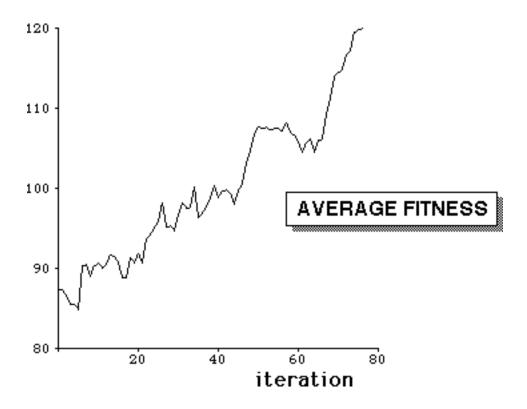
Cycle time is 50

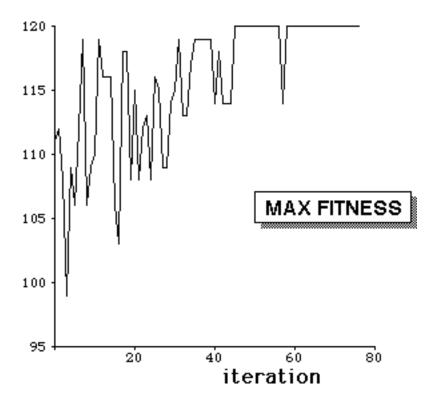



©Dennis Bricker, U. of Iowa, 1997

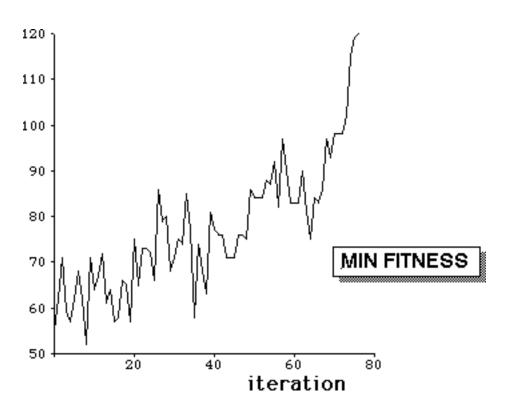


©Dennis Bricker, U. of Iowa, 1997

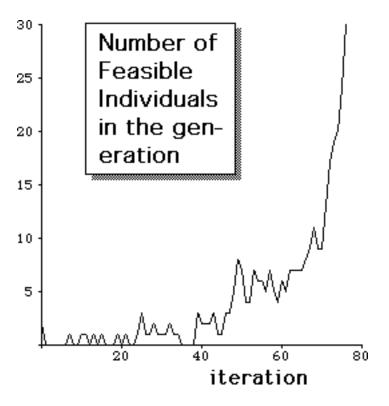


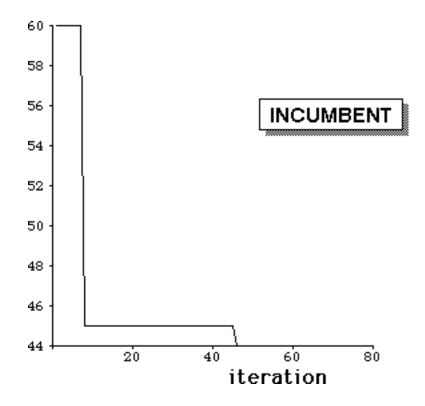


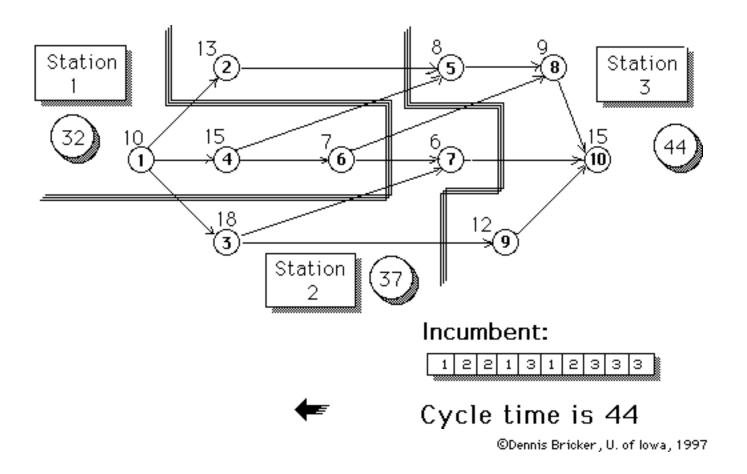
			Fitness		
gen	eration	min	max	average	≠ feasible
-		-			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	80000000000000000000000000000000000000
Running the	60	83	120	106.63	4
<u> </u>	61	83	120	105.60	6
GA again,but	62	83	120	104.47	5
•	63	90	120	105.63	7
with popula-	64	81	120	106.20	7
	65	75	120	104.50	7
tion size =	66	84	120	106.03	7
70 . 00	67	83	120	106.10	8
30, not 20	68	86	120	109.17	9
•	69	97	120	111.10	11
	70	93	120	113.90	9
	71	98	120	114.47	9
	72	98	120	114.83	13
A	73	98	120	116.63	17
Converges in	74	102	120	117.17	19
7644	75	115	120	119.50	20
76th genera-	76	119	120	119.80	24
tion	Converged	!***			



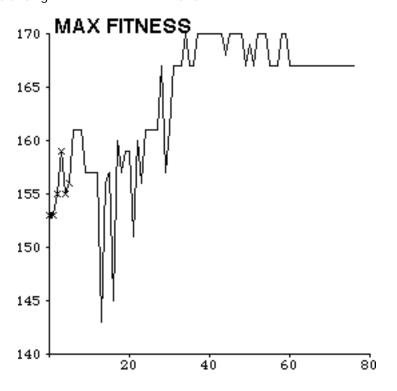
©Dennis Bricker, U. of Iowa, 1997



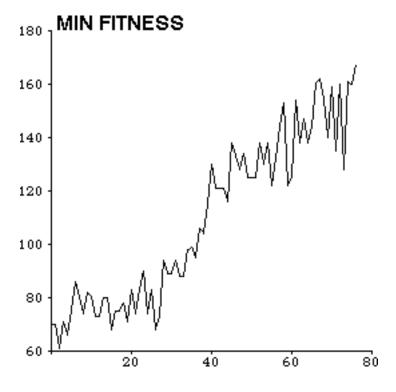

©Dennis Bricker, U. of Iowa, 1997

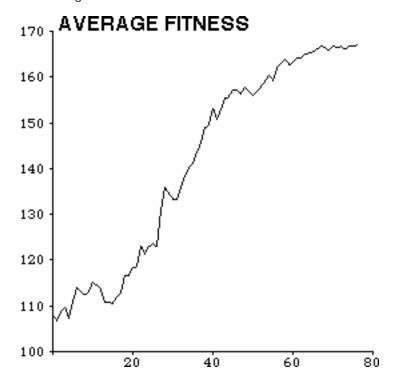

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

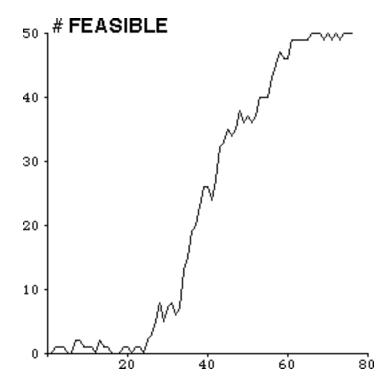


©Dennis Bricker, U. of Iowa, 1997



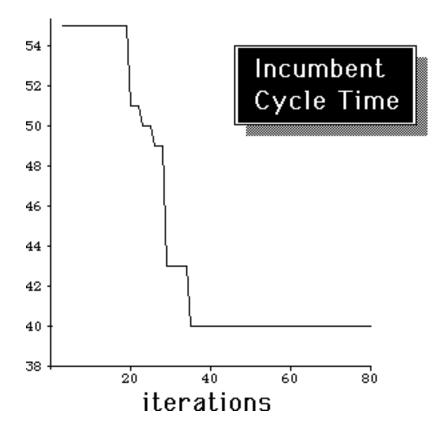

Finally, the GA was run with a population size of 50, and a probability of crossover equal to 75%.

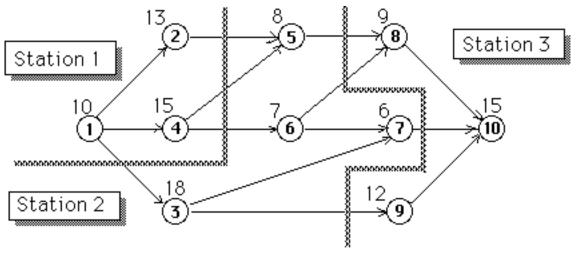
Convergence occurred on the 77th iteration.



©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997




All solutions in the final population are feasible, with fitness = 167 and cycle time = 43

There are four distinct solutions in the population:

1	2	1	1	3	2	3	3	2	3
1	2	1	1	2	2	3	3	2	3
1	2	1	1	2	2	3	3	3	3
1	2	1	1	2	3	3	3	2	3

The best solution was found in the 35th generation, with a cycle time equal to 40.

Cycle time = $Minimum{38, 39, 37} = 39$

Optimal Solution 1 1 2 1 2 2 2 3 3 3

The optimal cycle time is 39

©Dennis Bricker, U. of Iowa, 1997

APL Code

The following screens contain listings of some APL functions written to implement GA for the Assembly Line Balancing problem.


```
∇GA;detail;toprinter;Max_iterations;I;detail;sho
[1]
     А
[2]
     А
          Genetic Algorithm
[3]
          for Assembly Line Balancing Problem
     А
          namely, minimize Cycle Time, s.t. #stations
[4]
     А
[5]
     А
          Global variables used:
[6]
     А
[7]
             Nstations = # of stations to be used
     А
                       = vector of task times
[8]
     А
                       = adjacency matrix of precedenc
[9]
             Α
     А
[10] A
            Popsize = population size
                       = scalar > 1
[11] A
             kkk
                     = probability of crossover
[12] A
             Poross
            Pmutate = probability of mutation
[13] A
[14] A
```

```
[15]
      show_pop+detail+ASKYN 'Show details?'
      detail/'show_pop+ASKYN ''Show pools?'' '
[16]
[17]
      Max_iterations+Request_Box 'max # iterations'
[18]
      toprinter+AskPrint ◊ PrSelect
[19]
      Prologue
[20] A
      POP←Initial_Pool(Popsize,Nstations,ρP)
[21]
[22]
      CycleTime+Evaluate_Pool POP
[23]
      Fitness+(FkkkxUB+F/CycleTime)-CycleTime
[24]
      Incumbent+10 ♦ MinCycleTime+BIG
[25]
      MaxVals+MinVals+AvgVals+NumFeas+10 ♦ iteration+0
[26]
      Record_Status
      'Random Seed: ', \Set_Random_Seed
[27]
```

```
[38] A
[39] A
          Mate pairs in the selected pool
[40] POP+Crossover POP[I;]
[41] A
[42] A
            Mutate individuals in the pool
[43] POP+Mutate POP[I;]
[44] A
[45] Fitness+(FkkkxUB)-CycleTime+Evaluate_Pool POP
[46] Record_Status
           End of iteration
[47] A
[48] →Ne×t
[49] '*** Maximum # of iterations performed! ***'
[50] →Stop
[51] Converged: '*** Converged!***'
[52] A
[53] Stop: '*** terminated ***'
```

```
∇POOL+Initial_Pool X;msq;rl
[2]
            Get initial population for genetic algorith
     А
[3]
     А
[4]
            X[1]= population size
[5]
            X[2] = # of stations
     А
[6]
            X[3] = # of tasks
     А
[7]
[8]
      →Random △if ASKYN 'Random initial genetic pool?'
[9]
     Enter:POOL+$30 Alpha_Request_Box 'name of initial
[10] \rightarrowOK \triangleif^/(X[1]=1\uparrowpPOOL),(X[3]=\uparrow1\uparrowpPOOL),,POOL\in1X
      Message_Box '.Error!.Please try again'
[12]
      →Enter
[13] Random:rl+Set_Random_Seed
     POOL←?X[1 3]pX[2]
[14]
[15] OK:
      \nabla
```

```
▽Report_GA;table;M;output
[1]
[2]
             Report results in iteration of
[3]
             Genetic Algorithm for ALB problem
[4]
[5]
     detail/'SHIFTACTR UNDERLINE ''Generation #'', viteration
[6]
      M+1↑pPOP
[7]
      →(~show_pop)/Summary
      table \leftarrow '\bar{1}2, \langle | \rangle, \bar{1}6, \langle | \rangle' \cap FMT((2,M)) \cap (2,M), Fitness)
[8]
      table+table,'I2' OFMT POP
[9]
[10]
      OL, # Fitness
                           ---mating pool----'
      table ◊ PAUSE ◊ →End
[11]
[12] Summary:
      output+(iteration,(~1↑MinVals),(~1↑MaxVals),(~1↑AvgVals)
[14] 'I7,2I10,F10.2,I10' OFMT 1 5poutput
[15] End:
```

```
⊽Record_Status;b;i
[1]
[2]
           Record status of the population
[3]
           at the end of each generation
[4]
[5]
    MinVals←MinVals,L/Fitness
     MaxVals+MaxVals,Γ/Fitness
[6]
[7]
     AvgVals+AvgVals,AVERAGE Fitness
[8]
     NumFeas+NumFeas,+/0=nv+Number_Violations POP
     →End △if~Y/b+(nv=0)^CycleTime<T1↑MinCycleTime
[9]
     MinCycleTime+MinCycleTime,CycleTime[i+1↑b/lPopsize
[10]
     Incumbent + POP[i:]
[11]
     □CC 35 ♦ →Ø
[12]
[13] End:MinCycleTime+MinCycleTime, T1↑MinCycleTime
```

```
∇z+Evaluate_Pool POP;i;M
[2]
           Evaluate the individuals in the pool
     А
[3]
           (cycle time of assignment)
[4]
     i+0 ◊ M+(ρPOP)[1] ◊ z+Mρ0
[5]
     Next:→End △if M<i+i+1
[6]
[7]
      z[i]+Ctime POP[i;]
[8]
      →Ne×t
[9]
     End:
      \nabla
```

```
Vt+Ctime pop
[1]
[2]
           Compute Cycle time for solution "pop"
[3]
           where pop[i]= station to which task i is
[4]
           assigned. Include penalty times number
     А
[5]
           of precedence violations.
     А
[6]
[7]
           Global variable: Penalty
                              P = vector of task times
[8]
     А
[9]
[10] t \leftarrow \Gamma/((1Nstations) \cdot .= pop) + .xP A Cycle time
      t+t++/Penaltyx,A>pop...\pop A Violation penalty
```

```
▽z÷Number_Violations pop;i
[1]
[2]
           Compute number of violations of
[3]
     А
           precedence restrictions
[4]
[5]
           Global variable: A = precedence matrix
[6]
     →Single Δif 1=ρρρορ
[7]
      z+(1↑ρρορ)ρ0 ◊ i+0
     Next:→End Δif(ppop)[1]<i+i+1
[8]
[9]
      z[i]++/,A>pop[i;]..≤pop[i;]
[10]
      →Ne×t
[11] Single:z++/,A>pop ... \( \text{pop} \)
[12] End:
```

```
∇I+Select_Pool F;S;N;s0;s;f;n;a;b
[2]
              Select individuals from pool according
      А
              to their fitness values F
[3]
      A
[4]
              Fitness values are scaled so as
      А
[5]
                     to sum to 1.0 and
                         Max Fitness = scalefactor÷N
[6]
      А
              Global variable: GA_Scale_Factor
[7]
[8]
       a \leftarrow (GA\_Scale\_Factor-1) \div ((Popsize \times \Gamma/F) - + /F)
       b+(-axL/F)Γ(GA_Scale_Factor÷Popsize)-axΓ/F
[9]
       F+b+axF
[10]
[11] A
[12]
      S++/F ◊ f++\F
[13] =0+(S+N+\rho F)\times0.001\times?1000
[14] s \leftarrow s0 + (S \div N) \times 0, iN-1
[15]
       n \leftarrow n - 0, -1 \lor n \leftarrow + / (f \cdot \cdot \cdot \geq s)
       →0 \triangleif Popsize=\rhoI\leftarrow((n>0)/n)\setminus(n>0)/ιN
[16]
```

```
Q+Sample Fitness:N:S:s0:s:F
[2]
           Select individuals from the population,
     А
           who will survive to the next generation.
[3]
     А
[4]
          Argument: Fitness = vector of fitness values
[5]
              of the individuals in the population,
[6]
          Result: Q = vector of number of copies of
     А
[7]
              individuals to be included in the next ge
[8]
[9]
          Method used is "stochastic universal samplin
     А
              due to J.E. Baker
[10] A
[11] A
[12]
      S++/Fitness ♦ N+pFitness ♦ F++\Fitness
[13] s0←(?1000)xN÷1000xS
[14] s+s0+(S÷N)×0,iN-1
[15]
      Q \leftarrow (+/F \cdot ... \ge s) - (+/(0, -1 \lor F) \cdot ... \ge s)
```

```
∇Q+Crossover Pop;M;N;PAIR;I
[1]
              For each pair of individuals
[2]
              in the mating pool, either mate
      А
[3]
              them & put the 2 offspring into
      А
              the pool, or else copy them into
[4]
      А
[5]
              the new pool directly
     А
     N \leftarrow (\rho Pop)[1] \diamond M \leftarrow (\rho Pop)[2]
[6]
       Q←(0,<sup>-</sup>1↑ρΡορ)ρ0
[7]
[8]
              Randomly shuffle the pool
[9]
       Pop+Pop[N?N:]
[10] Next:→End ∆if 2>(pPop)[1]
[11] A
              Remove pair from the pool
[12]
      PAIR+(2,M)↑Pop ♦ Pop+2 Ø↓Pop
[13] A
[14]
      →Copy Aif Pcross((?1000)÷1000
[15] A
              Choose crossover point
       Q \leftarrow Q , [1]((2,I) \land PAIR), \phi [1](0,I \leftarrow 1 + ?M - 2) \lor PAIR
[16]
[17]
     →Ne×t
[18] Copy:Q+Q,[1]PAIR ◊ →Next
[19] End:Q←Q,[1]Pop
```

```
∇Q←Mutate Pop;I

[1] A

[2] A Perform mutation of the individuals in pool

[3] A

[4] Q←,Pop

[5] I←(Pmutate≥(?(ρQ)ρ10000)÷10000)/ιρQ

[6] Q[]+?(ρI)ρNstations

[7] Q←(ρPop)ρQ
```

