
TSP.Intro 8/22/	YOO page 1
Trave Sales Probl	MAN
This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu	

A **Hamiltonian Circuit** of a graph or network is a path which visits each node *exactly once* and terminates at the initial node.

A **Hamiltonian** Graph is a graph for which there is a Hamiltonian circuit.

page 3

Traveling Salesman Problem

The Traveling Salesman Problem (**TSP**) is that of finding the *shortest* Hamiltonian circuit *(tour)* in a Hamiltonian network.

Usually, the problem is posed for a complete network, which is, of course, always Hamiltonian.

A TSP in a complete network can be further classified as:

• Symmetric Traveling Salesman Problem *Complete, Undirected Network*

$$\mathbf{d}_{ij} = \mathbf{d}_{ji} \ \forall \ i \ \& \ j$$

Asymmetric Traveling Salesman Problem
Complete, Directed Network

$$\mathbf{d}_{ij} \neq \mathbf{d}_{ji} \ \forall \ i \ \& \ j$$

P Applications

🕼 Integer & Mixed-Integer Models

🕼 Branch-&-Bound Algorithms

🕼 Heuristic Algorithms